Analiza toplotne provodljivosti nanofluida Al2O3/voda-etilen glikol korišćenjem faktorskog dizajna eksperimenata u aparatu za prenos toplote sa prirodnom konvekcijom Naučni rad
Glavni sadržaj članka
Apstrakt
Toplotna provodljivost fluida za prenos toplote ima značajnu ulogu u poboljšanju performansi razmenjivača toplote. U ovom radu eksperimenti su izvedeni u aparatu za prenos toplote sa prirodnom konvekcijom mešanjem homogenizovanih nanočestica Al2O3 u osnovnom fluidu koji predstavlja smešu voda-etilenglikol. Analizirani su efekti unosa toplote, zapreminskog sadržaja nanočestica u osnovnom fluidu i zapreminskog udela etilenglikola u osnovnom fluidu na toplotnu provodljivost nanofluida. Na osnovu rezultata dobijenih pomoću programskog paketa MINITAB® (matrica faktorskog dizajna), izvedeno je 16 eksperimentalnih ciklusa sa nižim I višim nivoima ulaznih faktora. Nivoi za unos toplote bili su 10 i 100 W; za zapreminski sadržaj nanočestica u osnovnom fluidu 0,1 i 1,0 vol.% i za sastav osnovnog fluida 30 i 50 vol.% etilenglikola u vodi. Iz dobijenih eksperimentalnih rezultata kostruisani su Pareto dijagram, dijagram normalne verovatnoće, konturni grafikon i površinski grafikon. Na osnovu rezultata predložena je nova korelacija, a predviđanja su upoređena sa eksperimentalnim rezultatima. Iz studije je uočena maksimalna vrednost toplotne provodljivosti od 0,49 W m-1K-1 pri zapreminskom sadržaju nanočestica u osnovnom fluidu i od 1,0 vol.%, zapreminskom udelu etilenglikola u osnovnom fluidu od 30 vol.% i unosu toplote od 100 W.
Detalji članka
Broj časopisa
Rubrika
Ovaj rad je pod Creative Commons Aуторство-Nekomercijalno-Bez prerade 4.0 Internacionalna licenca.
Kada je rukopis prihvaćen za objavlјivanje, autori prenose autorska prava na izdavača. U slučaju da rukopis ne bude prihvaćen za štampu u časopisu, autori zadržavaju sva prava.
Na izdavača se prenose sledeća prava na rukopis, uklјučujući i dodatne materijale, i sve delove, izvode ili elemente rukopisa:
- pravo da reprodukuje i distribuira rukopis u štampanom obliku, uklјučujući i štampanje na zahtev;
- pravo na štampanje probnih primeraka, reprint i specijalnih izdanja rukopisa;
- pravo da rukopis prevede na druge jezike;
- pravo da rukopis reprodukuje koristeći fotomehanička ili slična sredstva, uklјučujući, ali ne ograničavajući se na fotokopiranje, i pravo da distribuira ove kopije;
- pravo da rukopis reprodukuje i distribuira elektronski ili optički koristeći sve nosioce podataka ili medija za pohranjivanje, a naročito u mašinski čitlјivoj/digitalizovanoj formi na nosačima podataka kao što su hard disk, CD-ROM, DVD, Blu-ray Disc (BD), mini disk, trake sa podacima, i pravo da reprodukuje i distribuira rukopis sa tih prenosnika podataka;
- pravo da sačuva rukopis u bazama podataka, uklјučujući i onlajn baze podataka, kao i pravo prenosa rukopisa u svim tehničkim sistemima i režimima;
- pravo da rukopis učini dostupnim javnosti ili zatvorenim grupama korisnika na osnovu pojedinačnih zahteva za upotrebu na monitoru ili drugim čitačima (uklјučujući i čitače elektonskih knjiga), i u štampanoj formi za korisnike, bilo putem interneta, onlajn servisa, ili putem internih ili eksternih mreža.
Kako citirati
Reference
Zlatković NR, Majstorović DM, Kijevčanin ML, Živković EM. Plate heat exchanger design software for industrial and educational applications. Hem. Ind.2017;71:439-449.https://doi.org/10.2298/HEMIND161021007Z
Choi SUS. Enhancing Thermal Conductivity of Fluids with Nanoparticles. In: D. A. Siginer and H. P. Wang, eds. Developments and Applications of Non-Newtonian Flows, FED-Vol. 231/MD-Vol. 66, ASME, New York, 1995, pp. 99–105.
Lee S, Choi SUS, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transfer. 1999;121:280-289. https://doi.org/10.1115/1.2825978
Wang X, Xu X, Choi SUS. Thermal Conductivity of Nanoparticle - Fluid Mixture. J Thermophys Heat Transfer. 1999;13:474–480. https://doi.org/10.2514/2.6486
Li CH, Peterson GP. The effect of particle size on the effective thermal conductivity of Al2O3 water nanofluid. J Appl Phys. 2007;101:044312. https://doi.org/10.1063/1.2436472
Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transfer. 1998;11:151–170. https://doi.org/10.1080/08916159808946559
Anisha M, Kanimozhi B, Beemkumarb N, Jayaprapakar J. Experimental and numerical analysis of heat transfer from main vessel to safety vessel using H2O/Al2O3 nanofluid in a nuclear reactor vault. Desalin Water Treat. 2018;114:135-145. https://doi.org/10.5004/dwt.2018.22384
AbdEihafez SE, EI-Shazly AH, EI- Maghraby A. Improving the rate of solar from nanofluid using micro heat exchanger. Desalin Water Treat. 2016;57: 23066-23073. https://doi.org/10.1080/19443994.2016.1157987
Manikandan SP, Baskar R. Assessment of the Influence of Graphene Nanoparticles on Thermal Conductivity of Graphene/Water Nanofluid Using Factorial Design of Experiments. Period Polytech Chem Eng. 2018;62:317-322. https://doi.org/10.3311/PPch.11676
Manikandan SP, Baskar R. Experimental heat transfer studies on copper nanofluid in a plate heat exchanger. Chem Ind Chem Eng Q. 2021;27:15-20. https://doi.org/10.2298/CICEQ191220020P
Manikandan SP, Baskar R. Heat transfer studies in compact heat exchanger using ZnO and TiO2 Nanofluid in Ethylene Glycol/Water. Chem Ind Chem Eng Q. 2018;24:309-318. https://doi.org/10.2298/CICEQ170720003M
Manikandan SP, Baskar R. Studies on thermo physical property variations of graphene nanoparticle suspended ethylene glycol/water. Chem Ind Chem Eng Q. 2021;27:177-187. https://doi.org/10.2298/CICEQ200504036P
Huang D, Wu Z, Sunden B. Pressure drop and convective heat transfer of Al2O3/water and MWCNT/water nanofluid in a chevron plate heat exchanger. Int J Heat Mass Transfer. 2015;89:620–626. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.082
Shanmugapriya M, Sangeetha P. Entropy generation analysis of Cu-water nanofluid flow over a moving wedge. Desalin Water Treat. 2018;121:14-21. https://doi.org/10.5004/dwt.2018.22189
Kim SH, Choi SR, Kim D. Thermal conductivity of metal-oxide nanofluids: Particle size dependence and effect of laser irradiation. J Heat Transfer. 2007:129:298-307. https://doi.org/10.1115/1.2427071
Kwon YH, Kim D, Li CG, Lee JK, Hong DS, Lee JG, Kim SH. Heat Transfer and Pressure Drop Characteristics of Nanofluid in a Plate Heat Exchanger. J Nanosci Nanotechnol. 2011;11:5769–5774. https://doi.org/10.1166/jnn.2011.4399
Patel HE, Sundararajan T, Das SK. An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J Nanopart Res. 2010; 12:1015–1031. https://doi.org/10.1007/s11051-009-9658-2
Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluid at the entrance region under laminar flow conditions. Int J Heat Mass Transfer. 2004;47: 5181–5188. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012
Mohebbi R, Khalilabad SH, Ma Y. Effect of -Al2O3/Water nanofluid on natural convection heat transfer of corrugated shaped cavity: study the different aspect ratio of grooves. J Appl Fluid Mech. 2019;12:1151-1160. https://doi.org/10.29252/JAFM.12.04.29455
Satti JR, Das DK, Ray D. Investigation of the thermal conductivity of propylene glycol nanofluid and comparison with correlations. Int J Heat Mass Transfer. 2017:107: 871–881. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.121
Barbés B, Páramo R, Blanco E, Pastoriza-Gallego MJ, Piñeiro MM, Legido JL. Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J Therm Anal Calorim. 2013; 111:1615–1625. https://doi.org/10.1007/s10973-012-2534-9
Pandey SD, Nema VK. Experimental analysis of heat transfer and friction factor of nanofluidas a coolant in a corrugated plate heat exchanger. Exp Therm Fluid Sci.2012;38:248–256. https://doi.org/10.1016/j.expthermflusci.2011.12.013
Rashidi I, Mahian O, Lorenzini G, Biserni C, Wongwises S. Natural convection of Al2O3/water nanofluid in a square cavity: effects of heterogeneous heating. Int J Heat Mass Transfer. 2014;74: 391–402. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.030
Durga Prasad PV, Gupta S, Sreeramulu M, Sundar LS, Singh MK, Sousa ACM. Experimental study of heat transfer and friction factor of Al2O3 nanofluid in U-tube heat exchanger with helical tape inserts. Exp Therm Fluid Sci. 2015; 62:141–150. https://doi.org/10.1016/j.expthermflusci.2014.12.006
Arunkumar T, Kaiwalya Raja, Denkenberger D, Velraja R. Heat carrier nanofluid in solar still-A review. Desalin Water Treat. 2018; 130:1-16. https://doi.org/10.5004/dwt.2018.22972
Maiga SEB, Nguyen CT, Galanis N, Roy G. Heat transfer behaviours of nanofluid in a uniformly heated tube. Superlattices Microstruct. 2004; 35:543–557. https://doi.org/10.1016/j.spmi.2003.09.012
Nesakumar D, Baskar R. Analysis of TiO2-ZnO/EG Hybrid Nanofluid Effect on Heat Transfer Enhancement. Appl Math Inf Sci. 2019:13: 965-972. https://doi.org/10.18576/amis/130609
Lenth RV. Quick and easy analysis of unreplicated factorials. Technometrics. 1989;31:469-473. https://doi.org/10.2307/1269997
Plackett RL, Burman JP. The Design of Optimum Multifactorial Experiments. Biometrika. 1946;33:305-325. https://doi.org/10.2307/2332195