Modelovanje uticaja veličine i masenog udela ojačavajućih čestica Al2O3 na tvrdoću aluminijumskih kompozita dobijenih stir casting postupkom Stručni rad

Glavni sadržaj članka

Jasmina Lj. Petrović
https://orcid.org/0000-0002-9131-339X
Srba A. Mladenović
https://orcid.org/0000-0002-3844-7399
Aleksandra T. Ivanović
https://orcid.org/0000-0002-0562-2824
Ivana I. Marković
https://orcid.org/0000-0003-4431-9921
Svetlana Lj. Ivanov
https://orcid.org/0000-0002-5326-0602

Apstrakt

U ovom radu, za izradu kompozita, korišćena je legura EN AW 6061 kao metalna osnova kompozita, a čestice Al2O3 kao ojačivač. Kompoziti su dobijeni "stir casting" postupkom livenja. Kompoziti su značajni inženjerski materijali i potrebno je detaljno proučiti načine proizvodnje i faktore koji utiču na mehanička svojstva. U tu svrhu primenjen je planirani eksperiment i matematički je modelovana tvrdoća kompzitnih materijala. Za razvoj matematičkog modela korišćen je pun faktorni plan eksperimenata, 32.  Veličina i maseni udeo ojačavajućih čestica Al2O3 bili su uticajni faktori, a vrednosti tvrdoće odziv sistema. Uticajni faktori posmatrani su na tri nivoa: 50, 80 i 110 μm za veličinu čestica i 2, 5 i 8 mas. % za udeo ojačivača. Izmerene vrednosti tvrdoće uzoraka kompozita, kretale su se u opsegu od 72,35 HV10 do 80,45 HV10. Višestrukom regresionom analizom, korišćenjem izmerenih vrednosti tvrdoće materijala, razvijen je matematički model. Dobijen je polinom drugog reda kojim se mogu predvideti vrednosti tvrdoće kompozita. Određivanje uticaja ulaznih faktora na odziv sistema i provera adekvatnosti dobijenog matematičkog modela, izvršena je primenom analize varijanse (Analysis of variance - ANOVA). Analiza rezultata je pokazala da veličina i maseni udeo ojačavajućih čestica imaju značajan uticaj na vrednosti tvrdoće kompozita i da predloženi matematički model sa velikom tačnošću potvrđuje eksperimentalno dobijene rezultate.

Detalji članka

Broj časopisa

Rubrika

Inženjerstvo materijala - Kompoziti

Kako citirati

[1]
J. L. Petrović, S. A. Mladenović, A. T. Ivanović, I. I. Marković, and S. L. Ivanov, “Modelovanje uticaja veličine i masenog udela ojačavajućih čestica Al2O3 na tvrdoću aluminijumskih kompozita dobijenih stir casting postupkom: Stručni rad”, Hem Ind, vol. 75, no. 4, pp. 195–204, Sep. 2021, doi: 10.2298/HEMIND210409018P.

Reference

Calister WD, Rethwisch DG. Materials Science and Engineering, An Introduction. 9th ed., New York, NY: Wiley; 2014 ISBN: 978-1-118-71718-9.

Mazumdar SK. Composites Manufacturing: Materials, Product, and Process Engineering. 1th ed., Boca Raton, USA: CRC Press; 2001 ISBN 0-8493-0585-3.

Campbell FC. Elements of Metallurgy and Engineering Alloys. 1th ed., ASM International, USA; 2008 ISBN: 978-0-87170-867-0.

Yigezu BS, Jha PK, Mahapatra MM. The key attributes of synthesizing ceramic particulate reinforced Al-based matrix composites through stir casting. Materials and Manufacturing Processes. 2013; 28: 969–979.

Yigezu BS, Mahapatra MM, Jha PK. Influence of reinforcement type on microstructure, hardness, and tensile properties of an aluminum alloy metal matrix composite. Journal of Minerals and Materials Characterization and Engineering. 2013; 4: 124-130. http://dx.doi.org/10.4236/jmmce.2013.14022

Telang AK, Rehman A, Dixit G, Das S. Alternate materials in automobile brake disc applications with emphasis on Al composites—A technical review. Journal of Engineering Research and Studies. 2010; 1: 35-46.

Vencl A, Šljivić V, Pokusová M, Kandeva M, Sun HG, Zadorozhnaya E, Bobić I. Production, microstructure and tribological properties of Zn-Al/Ti metal-metal composites reinforced with alumina nanoparticles. Inter Metalcast. 2021. https://doi.org/10.1007/s40962-020-00565-5

Vencl A, Bobić I, Bobić B, Jakimovska K, Svoboda P, Kandeva M. Erosive wear properties of ZA-27 alloy-based nanocomposites: Influence of type, amount and size of nanoparticle reinforcements. Friction 2019; 7(4): 340–350. https://doi.org/10.1007/s40544-018-0222-x.

Manasijević S, Marković S, Radiša R. Primena novih tehnologija u cilju poboljšanja eksploatacionih svojstava klipova sus motora od aluminijumskih legura. Zaštita materijala. 2013; 1(54): 45-50. http://idk.org.rs/wp-content/uploads/2013/12/8SRECKO.pdf

Burzić M, Sedmak S, Burzić Z, Jaković D, Momčilović D. Uticaj sadržaja ojačavača na udarnu žilavost livenog Al-SiCp metal matričnog kompozita. Integritet i vek konstrukcija. 2002; 1-2: 11-14. http://divk.inovacionicentar.rs/ivk/pdf/IVK1-2-2002-3.pdf

Sakthive A, Palaninathan R, Velmurugan R, Rao PR. Production and mechanical properties of SiCp particle-reinforced 2618 aluminum alloy composites. J Mater Sci. 2008; 43: 7047-7056. http://dx.doi.org/10.1007/s10853-008-3033-z

Bayraktar E, Masounave J, Caplain R, Bathias C. Manufacturing and damage mechanisms in metal matrix composites. Journal of Achievements in Materia and Manufacturing Engineering, 2008; 2(31): 294-300.

Miracle DB. Metal matrix composites from science to technological significance. Compos. Sci. Technol. 2005; 65 (15-16): 2526-2540. https://doi.org/10.1016/j.compscitech.2005.05.027

Zhou MY, Ren LB, Fan LL, Zhang YWX, Lu TH, Quan GF, Gupta M. Progress in research on hybrid metal matrix composites. J Alloy Compd. 2020; 838: 1-40. https://doi.org/10.1155/2020/3765791

George B, Sankar A, Bibin KT. Fabrication and characterization of aluminium hybrid composite. International Journal of Engineering Sciences and Research Technology. 2018; 7(4): 437-446.

Shinde S. Manufactoring of aluminium matrix composite using stir casting method. International Journal of Innovations in Engineering Research and Technology. 2015; 2(5): 1-6.

Bharath V, Nagaralb M, V Auradib V, Kori S. Preparation of 6061Al-Al2O3 MMCs by stir casting and evaluation of mechanical and wear properties. Procedia Materials Science. 2014; 6: 1658-1667. https://doi.org/10.1016/j.mspro.2014.07.151

Alaneme KK, Bodunrin MO, Awe AA. Microstructure, mechanical and fracture properties of groundnut shell ash and silicon carbide dispersion strengthened aluminium matrix composites. Journal of King Saud University – Engineering Sciences. 2018; 30(1): 96–103. https://doi.org/10.1016/j.jksues.2016.01.001

Prabhu SR, Shettigar AK, Herbert MA, Rao SS. Microstructure and mechanical properties of rutile-reinforced AA6061 matrix composites produced via stir casting process. Trans. Nonferrous Met. Soc. China. 2019; 29: 2229−2236. https://doi.org/10.1016/S1003-6326(19)65152-6

Sajjadi SA, Ezatpour HR, Beygi H. Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting. Mater Sci Eng A. 2011; 528: 8765-8771. https://doi.org/10.1016/j.msea.2011.08.052

Baradeswaran A, Perumal AE. Study on mechanical and wear properties of Al7075/Al2O3/graphite hybrid composites. Composites: Part B. 2014; 56 : 464–471.

Montgomery DC. Response Surface Methods and Other Approaches to Process Optimization. In: Montgomery DC, Design and Analysis of Experiments. 1st ed., New York, NY: John Wiley & Sons; 1997 ISBN 978-1118-14692-7.

Khuri AI, Cornell JA. Response Surfaces: Designs and Analyses. 2nd ed., USA: CRC Press; 2019 ISBN 9780367401252.

Deshmanya IB, Purohit GK. Development of mathematical model to predict micro-hardness of Al7075/Al2O3 composites produced by stir-casting. Journal of Engineering Science and Technology Review, 2012; 5(1): 44-50.

Huda D, Baradie MA, Hasmi MSJ. Development of hardness model for MMCs (Al/A2O3). Journal Materials Processing Technology. 1994; 44: 81- 90. https://doi.org/10.1016/0924-0136(94)90040-X

Anilkumar HC, Hebbar HS, Ravishankar KS. Mechanical properties of fly ash reinforced aluminium alloy (Al6061) composites. International Journal of Mechanical and Mechatronics Engineering. 2011; 6: 41–45.

Kok M. Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites. Journal of Materials Processing Technology. 2005; 161: 381–387.

Kok M, Ozdin K. Wear resistance of aluminium alloy and its composites reinforced by Al2O3 particles. Journal of Materials Processing Technology. 2007; 183: 301–309. http://dx.doi.org/10.1016/j.jmatprotec.2006.10.021

Mahdavi S, Akhlaghi F. Effect of the SiC particle size on the dry sliding wear behavior of SiC and SiC–Gr-reinforced Al6061 composites. J Mater Sci. 2011; 46: 7883–7894. https://doi.org/10.1007/s10853-011-5776-1

Pantelić I. Uvod u reoriju inženjerskog eksperimenta. Novi Sad, Srbija: Radnički univerzitet "Radivoj Ćirpanov"; 1976.

SPSS inc. PAWS Statistics 18, Predictive Analysis SoftwarePortfolio (www.spss.com).

Ivanović A, Trumić B, Ivanov S, Marjanović S. Modelovanje uticaja temperatute i vremena homogenizacionog žarenja na tvrdoću PdNi5 legure. Hem. Ind. 2014; 68: 597–603. https://doi.org/10.2298/HEMIND130620085I

Savić I, Nikolić G, Savić I, Cakić M, A. Dosić, Čanadi J. Modelovanje stabilnosti bioaktivnog bakar(II) kompleksa primenom eksperimentalnog dizajna, Hem. Ind. 2012; 66: 693–699. https://doi.org/10.2298/HEMIND120120021S

Požega E, Ivanov S, Conić V, Čađenović B. Mogućnost procesa boriranja na presovanim uzorcima od železnog praha. Hem.Ind. 2009; 63: 253–258. https://doi.org/10.2298/HEMIND0903253P

Ivanov S, Ivanić Lj, Gusković D, Mladenović S. Optimizacija režima starenja legura na aluminijumskoj osnovi. Hem. Ind. 2012; 66: 601–607.

Ivanov S, Kočovski B, Stanojević B. Ocena uticaja termomehaničkih parametara prerade bakarne žice na izduženje spirale primenom faktornog eksperimenta. Metalurgija. 1996; 2: 13–23.

Indumati D, Purohit G. Prediction of hardness of forged Al7075/Al2O3 composites using factorial design of experiments. International Journal of Engineering Research and Applications. 2012; 2: 84–90.

BS EN 573-3: Aluminium and aluminium alloys. Chemical composition and form of wrought products. Chemical composition and form of products. 2019.

Raymond HM, Douglas MC. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. 4th ed., New York, NY: John Wiley & Sons; 2016 ISBN: 978-1-118-91601-8.

Bas D, Boyaci IH. Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 2007; 78: 836-845. https://doi.org/10.1016/j.jfoodeng.2005.11.024.

Raghavendra N, Ramamurthy VS. Effect of particle size and weight fraction of alumina reinforcement on wear behavior of aluminum metal matrix composites. International Journal of Innovative Research in Science, Engineering and Technology. 2014; 4(3): 11191-11198.

Mihajlović I, Nikolić Đ, Jovanović A. Teorija sistema. 1st ed., Bor, Srbija: Tehnički fakultet u Boru; 2009.

Boopathi MM, Arulshri KP, Iyandurai N. Evaluation of mechanical properties of aluminium alloy 2024 reinforced with silicon carbide and fly ash hybrid metal matrix composites. American Journal of Applied Sciences. 2013; 10(3): 219-229. https://doi.org/10.3844/ajassp.2013.219.229

Singh J, Suri N, Verma A. Affect of mechanical properties on groundnut shell ash reinforced Al 6063. International Journal for Technological Research in Engineering. 2015; 11(2): 2619-2623.

Ashok N, Shanmughasundaram P. Effect of particles size on the mechanical properties of SiC-reinforced aluminium 8011 composites. Materials and Technology. 2017; 51(4): 667-672. https://doi.org/10.17222/mit.2016.252

Similar Articles

You may also start an advanced similarity search for this article.

Najčitanije od istog autora