Sweet cherry (Prunus avium L.) vacuum drying: Kinetics modelling and textural properties
Glavni sadržaj članka
Apstrakt
Sweet cherries (Prunus avium L.) were vacuum dried at different temperatures in the range between 50 and 70 oC and different pressures between 20 and 200 mbar. Seven mathematical models (Henderson-Pabis, Modified Henderson-Pabis, Simplified Ficks diffusion, Peleg, Logarithmic, Two term and Midilli et al.) were used for description of the vacuum drying process and the Midilli et al. model was selected as the most suitable with the highest mean value of coefficient of determination (R2=0.9985) and the lowest mean values of the average absolute relative deviation (AARD=0.90 %), root mean square error (RMSE=0.0061) and the reduced chi-square (χ2=0.0001). Seven textural properties (shear force, penetration force, hardness, springiness, cohesiveness, gumminess and chewiness) were investigated in all dried sweet cherry samples. The results indicated that the pressure influenced the textural properties of sweet cherries during vacuum drying since the minimum values of all investigated texture properties were obtained in samples dried at the pressure of 200 mbar, while the maximum values were obtained at 20 and 65 mbar. It also was noticed that the temperature influenced the textural properties in the temperature range investigated, but not as significantly as it was the case of the pressure influence.
Detalji članka
Broj časopisa
Rubrika
Kada je rukopis prihvaćen za objavlјivanje, autori prenose autorska prava na izdavača. U slučaju da rukopis ne bude prihvaćen za štampu u časopisu, autori zadržavaju sva prava.
Na izdavača se prenose sledeća prava na rukopis, uklјučujući i dodatne materijale, i sve delove, izvode ili elemente rukopisa:
- pravo da reprodukuje i distribuira rukopis u štampanom obliku, uklјučujući i štampanje na zahtev;
- pravo na štampanje probnih primeraka, reprint i specijalnih izdanja rukopisa;
- pravo da rukopis prevede na druge jezike;
- pravo da rukopis reprodukuje koristeći fotomehanička ili slična sredstva, uklјučujući, ali ne ograničavajući se na fotokopiranje, i pravo da distribuira ove kopije;
- pravo da rukopis reprodukuje i distribuira elektronski ili optički koristeći sve nosioce podataka ili medija za pohranjivanje, a naročito u mašinski čitlјivoj/digitalizovanoj formi na nosačima podataka kao što su hard disk, CD-ROM, DVD, Blu-ray Disc (BD), mini disk, trake sa podacima, i pravo da reprodukuje i distribuira rukopis sa tih prenosnika podataka;
- pravo da sačuva rukopis u bazama podataka, uklјučujući i onlajn baze podataka, kao i pravo prenosa rukopisa u svim tehničkim sistemima i režimima;
- pravo da rukopis učini dostupnim javnosti ili zatvorenim grupama korisnika na osnovu pojedinačnih zahteva za upotrebu na monitoru ili drugim čitačima (uklјučujući i čitače elektonskih knjiga), i u štampanoj formi za korisnike, bilo putem interneta, onlajn servisa, ili putem internih ili eksternih mreža.
Kako citirati
Reference
Bastos C, Barros L, Dueñas M, Calhelha RC, Queiroz MJR, Santos-Buelga C, Ferreira IC. Chemical characterisation and bioactive properties of Prunus avium L.: The widely studied fruits and the unexplored stems. Food Chem. 2015, 173: 1045-1053. https://doi.org/10.1016/j.foodchem.2014.10.145
Ballistreri G, Continella A, Gentile A, Amenta M, Fabroni S, Rapisarda P. Fruit quality and bioactive compounds relevant to human health of sweet cherry (Prunus avium L.) cultivars grown in Italy. Food Chem. 2013, 140: 630-638. https://doi.org/10.1016/j.foodchem.2012.11.024
Vursavuş K, Kelebek H, Selli S. A study on some chemical and physico-mechanic properties of three sweet cherry varieties (Prunus avium L.) in Turkey. J Food Eng. 2006, 74: 568-575. https://doi.org/10.1016/j.jfoodeng.2005.03.059
Salehi F, Kashaninejad M. Modeling of moisture loss kinetics and color changes in the surface of lemon slice during the combined infrared-vacuum drying. Inf Process Agric. 2018, 5: 516−523. https://doi.org/10.1016/j.inpa.2018.05.006
Giri SK, Prasad S. Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. J Food Eng. 2007, 78: 512−521. https://doi.org/10.1016/j.jfoodeng.2005.10.021
Ashtiani SHM, Salarikia A, Golzarian MR. Analyzing drying characteristics and modeling of thin layers of peppermint leaves under hot-air and infrared treatments. Inf Process Agric. 2017, 4: 128−139. https://doi.org/10.1016/j.inpa.2017.03.001
Dinani ST, Hamdami N, Shahedi M, Havet M. Mathematical modeling of hot air/electrohydrodynamic (EHD) drying kinetics of mushroom slices. Energ Convers Manage. 2014, 86: 70−80. https://doi.org/10.1016/j.enconman.2014.05.010
Doymaz İ. Evaluation of some thin-layer drying models of persimmon slices (Diospyros kaki L.). Energ Convers Manage. 2012, 56: 199−205. https://doi.org/10.1016/j.enconman.2011.11.027
Brasiello A, Adiletta G, Russo P, Crescitelli S, Albanese D, Di Matteo M. Mathematical modeling of eggplant drying: shrinkage effect. J Food Eng. 2013, 114: 99−105. https://doi.org/10.1016/j.jfoodeng.2012.07.031
Arévalo-Pinedo A, Murr FE. Kinetics of vacuum drying of pumpkin (Cucurbita maxima): modeling with shrinkage. J Food Eng. 2006, 76: 562−567. https://doi.org/10.1016/j.jfoodeng.2005.06.003
Babalis SJ, Papanicolaou E, Kyriakis N, Belessiotis VG. Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica). J Food Eng. 2006, 75: 205−214. https://doi.org/10.1016/j.jfoodeng.2005.04.008
Simal S, Femenia A, Garau MC, Rossello C. Use of exponential. Page's and diffusional models to simulate the drying kinetics of kiwi fruit. J Food Eng. 2005, 66: 323−328. https://doi.org/10.1016/j.jfoodeng.2004.03.025
Doymaz İ, İsmail O. Drying characteristics of sweet cherry. Food Bioprod Process. 2011, 89: 31−38. https://doi.org/10.1016/j.fbp.2010.03.006
Šumić Z, Tepić A, Vidović S, Jokić S, Malbaša R. Optimization of frozen sour cherries vacuum drying process. Food Chem. 2013, 136: 55-63. https://doi.org/10.1016/j.foodchem.2012.07.102
Motavali A, Najafi GH, Abbasi S, Minaei S, Ghaderi A. Microwave–vacuum drying of sour cherry: comparison of mathematical models and artificial neural networks. J Food Sci Technol. 2013, 50: 714−722. https://doi.org/10.1007/s13197-011-0393-1
Tepić Horecki A, Vakula A, Pavlić B, Jokanović M, Malbaša R, Vitas J, Jaćimović V, Šumić Z. Comparative drying of cornelian cherries: Kinetics modeling and physico‐chemical properties. J Food Process Pres. 2018, 42: e13562. https://doi.org/10.1111/jfpp.13562
Henderson S.M, Pabis S. Grain drying theory. II. Temperature effects on drying coeficients. J Ag Eng Res. 1961, 6: 169–174.
Karathanos VT. Determination of water content of dried fruits by drying kinetics. J Food Eng. 1999, 39: 337–344. https://doi.org/10.1016/S0260-8774(98)00132-0
Diamante LM, Munro PA. Mathematical modelling of hot air drying of sweet potato slices. Int J Food Sci Tech. 1991, 26: 99−109. https://doi.org/10.1111/j.1365-2621.1991.tb01145.x
Mercali GD, Tessaro IC, Noreña CP, Marczak LD. Mass transfer kinetics during osmotic dehydration of bananas (Musa sapientum. shum.). Int J Food Sci Tech. 2010, 45: 2281–2289. doi: 10.1111/j.1365-2621.2010.02418.x
Yagcioglu A, Degirmencioglu A, Cagatay F. Drying characteristic of laurel leaves under different conditions. In: Bascetincelik A. ed. Proceedings of the 7th international congress on agricultural mechanization and energy. 26-27 May. Adana. Turkey. Faculty of Agriculture. Cukurova University; 1999: 565-569.
Henderson SM. Progress in developing the thin layer drying equation. T ASAE. 1974, 17: 1167–1168. doi: 10.13031/2013.37052
Midilli A, Kucuk H, Yapar Z. A new model for single layer drying. Dry Technol. 2002, 120: 1503–1513. https://doi.org/10.1081/DRT-120005864
Bourne MC. Texture profile analysis. Food Technol. 1978, 32: 62−66.
Lee JH, Kim HJ. Vacuum drying kinetics of Asian white radish (Raphanus sativus L.) slices. LWT-Food Sci Technol. 2009, 42: 180–186. https://doi.org/10.1016/j.lwt.2008.05.017
StatSoft. Inc. (2010). STATISTICA (data analysis software system). version 10.0. http://www.statsoft.com/ Accessed December 10. 2019.
Sacilik K, Elicin AK. The thin layer drying characteristics of organic apple slices. J Food Eng. 2006, 73: 281–289. https://doi.org/10.1016/j.jfoodeng.2005.03.024
Henríquez C, Córdova A, Almonacid S, Saavedra J. Kinetic modeling of phenolic compound degradation during drum-drying of apple peel by-products. J Food Eng. 2014, 143: 146−153. https://doi.org/10.1016/j.jfoodeng.2014.06.037
Meisami-Asl E, Rafiee S, Keyhani A, Tabatabaeefar A. Mathematical modeling of moisture content of apple slices (Var. Golab) during drying. Pak J Nutr. 2009, 8: 804−809.
Shi Q, Zheng Y, Zhao Y. Mathematical modeling on thin-layer heat pump drying of yacon (Smallanthus sonchifolius) slices. Energ Convers and Manage. 2013, 71, 208−216. https://doi.org/10.1016/j.enconman.2013.03.032
Janowicz M, Lenart A. The impact of high pressure and drying processing on internal structure and quality of fruit. Eur Food Res Technol. 2018, 244: 1329−1340. https://doi.org/10.1007/s00217-018-3047-y
Zielinska M, Michalska A. Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics. polyphenols. anthocyanins. antioxidant capacity. colour and texture. Food Chem. 2016, 212: 671−680. https://doi.org/10.1016/j.foodchem.2016.06.003
Yongsawatdigul J, Gunasekaran S. Microwave‐vacuum drying of cranberries: Part I. Energy use and efficiency. J Food Process Pres. 1996, 20: 121−143. https://doi.org/10.1111/j.1745-4549.1996.tb00850.x