Odnos intenziteta luminescencije tri termalizovana nivoa u YAG:Er3+/Yb3+nanočesticama Naučni rad

Glavni sadržaj članka

Aleksandar Ćirić
https://orcid.org/0000-0003-2492-9036
Mina
https://orcid.org/0000-0001-8950-2426
Jovana
https://orcid.org/0000-0002-4683-0603
Željka
https://orcid.org/0000-0002-7990-2001
Miroslav
https://orcid.org/0000-0003-4750-5359

Apstrakt

Luminiscentna termometrija je metoda za očitavanje temperature pomoću daljinskog senzora temperature posmatranjem temperaturno zavisnih spektralnih promena. Potraga za povećanom osetljivosti očitavanja temperature motivisala je istraživanje korišćenja trećeg termalizovanog nivoa Er3+ emisije u fotoluminiscenciji Yb3+/Er3+. Za ovu svrhu pripremljene su veoma stabilne i efikasne nanočestice YAG:Yb3+/Er3+ modifikovanom Pećinijevom metodom. Emisioni spektri su snimljeni u temperaturnom opsegu od 300 K do 800 K i dobijena su dva odnosa intenziteta luminiscencije između emisija 4S3/2, 2H11/2 i 4F7/2. Pored odličnog poklapanja sa teorijskim predviđanjima, očitavanje korišćenjem 4F7/2 metode je omogućilo 3,5 puta povećanje relativne osetljivosti u odnosu na odnos intenziteta luminiscencije za nivo 2H11/2, uz ograničenje upotrebljivosti samo iznad 600 K. Metoda emisije iz 2H11/2 treba da se koristi od 300 K do 600 K, dok emisija od 4F7/2 obezbeđuje najbolji odnos intenziteta luminiscencije od 600 K do 800 K. YAG:Yb3+/Er3+ nanočestice su se pokazale kao odličan senzorski materijal za luminescentnu metodu odnosa intenziteta korišćenjem više termalizovanih nivoa.

Detalji članka

Broj časopisa

Rubrika

Primenjena hemija

Kako citirati

[1]
A. Ćirić, Mina, Jovana, Željka, and Miroslav, “Odnos intenziteta luminescencije tri termalizovana nivoa u YAG:Er3+/Yb3+nanočesticama: Naučni rad”, Hem Ind, vol. 78, no. 4, pp. 351–357, Jan. 2025, doi: 10.2298/HEMIND240227021C.

Funding data

Reference

[1] Wang X, Wolfbeis OS, Meier RJ. Luminescent probes and sensors for temperature. Chem Soc Rev. 2013; 42(19): 7834. https://doi.org/10.1039/c3cs60102a

[2] Wade SA. Temperature Measurement Using Rare Earth Doped Fibre Fluorescence. Victoria. 1999:169. https://vuir.vu.edu.au/id/eprint/15723

[3] Wade SA, Collins SF, Baxter GW. Fluorescence intensity ratio technique for optical fiber point temperature sensing. J Appl Phys. 2003; 94(8):.743. https://doi.org/10.1063/1.1606526

[4] Wang X, Liu Q, Bu Y, Liu C-S, Liu T, Yan X. Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv. 2015; 5(105): 86219–36. https://doi.org/10.1039/C5RA16986K

[5] Sun Q-C, Ding YC, Sagar DM, Nagpal P. Photon upconversion towards applications in energy conversion and bioimaging. Prog Surf Sci. 2017; 92(4): 281–316. https://doi.org/10.1016/j.progsurf.2017.09.003

[6] Auzel F. Compteur quantique par transfert d’energie entre deux ions de terres rares dans un tungstate mixte et dans un verre. CR Acad Sci Paris. 1966; 262: 1016–1019.

[7] Suta M, Meijerink A. A Theoretical Framework for Ratiometric Single Ion Luminescent Thermometers—Thermodynamic and Kinetic Guidelines for Optimized Performance. Adv Theory Simulations. 2020; 3(12): 2000176. https://doi.org/10.1002/adts.202000176

[8] Marciniak L, Bednarkiewicz A, Kowalska D, Strek W. A new generation of highly sensitive luminescent thermometers operating in the optical window of biological tissues. J Mater Chem C. 2016; 4(24): 5559–5563. https://doi.org/10.1039/C6TC01484D

[9] Ćirić A, Periša J, Zeković I, Antić Ž, Dramićanin MD. Multilevel-cascade intensity ratio temperature read-out of Dy3+ luminescence thermometers. J Lumin. 2022 ;245: 118795. https://doi.org/10.1016/j.jlumin.2022.118795

[10] Ćirić A, Aleksić J, Barudžija T, Antić Ž, Đorđević V, Medić M, Periša J, Zeković I, Mitrić M, Dramićanin MD. Comparison of three ratiometric temperature readings from the Er3+ upconversion emission. Nanomaterials. 2020; 10(4): 627. https://doi.org/10.3390/nano10040627

[11] Shi H, Zhu C, Huang J, Chen J, Chen D, Wang W, Wang F, Cao Y, Yuan X. Luminescence properties of YAG:Ce, Gd phosphors synthesized under vacuum condition and their white LED performances. Optical Materials Express. 2014; 4 (4): 649-655. https://doi.org/10.1364/OME.4.000649

[12] Pechini M. Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Patent No. 3330697., 1967

[13] Periša J, Ristić Z, Piotrowski W, Antić Ž, Marciniak L, Dramićanin MD. All near-infrared multiparametric luminescence thermometry using Er3+, Yb3+-doped YAG nanoparticles. RSC Advances. 2021; 11(26): 15933. https://doi.org/10.1039/d1ra01647d

[14] Yin HJ, Feng JS, Liang N, Liu XM, Liu JX, Wang KZ, Yao CJ. Boosting Photo Upconversion in Electropolymerised Thin Film with Yb/Er Complexes. Adv. Opt. Mat. 2023; 11(6), 2202550. https://doi.org/10.1002/adom.202202550

[15] Yoshikawa A, Boulon G, Laversenne L, Canibano H, Lebbou K, Collombet A, Guyot Y, Fukuda T. Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals. J Appl Phys. 2003; 94(9): 5479–88. https://doi.org/10.1063/1.1597763

[16] Ćirić A, van Swieten T, Periša J, Meijerink A, Dramićanin MD. Twofold increase in the sensitivity of Er3+/Yb3+ Boltzmann thermometer. J Appl Phys. 2023; 133(19): 194501 https://doi.org/10.1063/5.0149757

[17] Auzel F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem Rev. 2004; 104(1): 139-174. https://doi.org/10.1021/cr020357g

[18] Ćirić A, Dramićanin MD. LumTHools - Software for fitting the temperature dependence of luminescence emission intensity, lifetime, bandshift, and bandwidth and luminescence thermometry and review of the theoretical models. J Lumin. 2022; 252: 119413. https://doi.org/10.1016/j.jlumin.2022.119413

[19] Ćirić A, Gavrilović T, Dramićanin MD. Luminescence Intensity Ratio Thermometry with Er3+. Crystals. 2021; 11(2): 189. https://doi.org/10.3390/cryst11020189

Similar Articles

You may also start an advanced similarity search for this article.

Najčitanije od istog autora

1 2 > >>