Odnos intenziteta luminescencije tri termalizovana nivoa u YAG:Er3+/Yb3+nanočesticama Naučni rad

Glavni sadržaj članka

Aleksandar Ćirić
https://orcid.org/0000-0003-2492-9036
Mina
https://orcid.org/0000-0001-8950-2426
Jovana
https://orcid.org/0000-0002-4683-0603
Željka
https://orcid.org/0000-0002-7990-2001
Miroslav
https://orcid.org/0000-0003-4750-5359

Apstrakt

Luminiscentna termometrija je metoda za očitavanje temperature pomoću daljinskog senzora temperature posmatranjem temperaturno zavisnih spektralnih promena. Potraga za povećanom osetljivosti očitavanja temperature motivisala je istraživanje korišćenja trećeg termalizovanog nivoa Er3+ emisije u fotoluminiscenciji Yb3+/Er3+. Za ovu svrhu pripremljene su veoma stabilne i efikasne nanočestice YAG:Yb3+/Er3+ modifikovanom Pećinijevom metodom. Emisioni spektri su snimljeni u temperaturnom opsegu od 300 K do 800 K i dobijena su dva odnosa intenziteta luminiscencije između emisija 4S3/2, 2H11/2 i 4F7/2. Pored odličnog poklapanja sa teorijskim predviđanjima, očitavanje korišćenjem 4F7/2 metode je omogućilo 3,5 puta povećanje relativne osetljivosti u odnosu na odnos intenziteta luminiscencije za nivo 2H11/2, uz ograničenje upotrebljivosti samo iznad 600 K. Metoda emisije iz 2H11/2 treba da se koristi od 300 K do 600 K, dok emisija od 4F7/2 obezbeđuje najbolji odnos intenziteta luminiscencije od 600 K do 800 K. YAG:Yb3+/Er3+ nanočestice su se pokazale kao odličan senzorski materijal za luminescentnu metodu odnosa intenziteta korišćenjem više termalizovanih nivoa.

Detalji članka

Broj časopisa

Rubrika

Primenjena hemija

Kako citirati

[1]
A. Ćirić, Mina, Jovana, Željka, and Miroslav, “Odnos intenziteta luminescencije tri termalizovana nivoa u YAG:Er3+/Yb3+nanočesticama: Naučni rad”, Hem Ind, Oct. 2024, doi: 10.2298/HEMIND240227021C.

Funding data

Reference

Wang X, Wolfbeis OS, Meier RJ. Luminescent probes and sensors for temperature. Chem Soc Rev. 2013; 42(19): 7834. https://doi.org/10.1039/c3cs60102a

Wade SA. Temperature Measurement Using Rare Earth Doped Fibre Fluorescence. Victoria. 1999:169. https://vuir.vu.edu.au/id/eprint/15723

Wade SA, Collins SF, Baxter GW. Fluorescence intensity ratio technique for optical fiber point temperature sensing. J Appl Phys. 2003; 94(8):.743. https://doi.org/10.1063/1.1606526

Wang X, Liu Q, Bu Y, Liu C-S, Liu T, Yan X. Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv. 2015; 5(105): 86219–36. https://doi.org/10.1039/C5RA16986K

Sun Q-C, Ding YC, Sagar DM, Nagpal P. Photon upconversion towards applications in energy conversion and bioimaging. Prog Surf Sci. 2017; 92(4): 281–316. https://doi.org/10.1016/j.progsurf.2017.09.003

Auzel F. Compteur quantique par transfert d’energie entre deux ions de terres rares dans un tungstate mixte et dans un verre. CR Acad Sci Paris. 1966; 262: 1016–1019.

Suta M, Meijerink A. A Theoretical Framework for Ratiometric Single Ion Luminescent Thermometers—Thermodynamic and Kinetic Guidelines for Optimized Performance. Adv Theory Simulations. 2020; 3(12): 2000176. https://doi.org/10.1002/adts.202000176

Marciniak L, Bednarkiewicz A, Kowalska D, Strek W. A new generation of highly sensitive luminescent thermometers operating in the optical window of biological tissues. J Mater Chem C. 2016; 4(24): 5559–5563. https://doi.org/10.1039/C6TC01484D

Ćirić A, Periša J, Zeković I, Antić Ž, Dramićanin MD. Multilevel-cascade intensity ratio temperature read-out of Dy3+ luminescence thermometers. J Lumin. 2022 ;245: 118795. https://doi.org/10.1016/j.jlumin.2022.118795

Ćirić A, Aleksić J, Barudžija T, Antić Ž, Đorđević V, Medić M, Periša J, Zeković I, Mitrić M, Dramićanin MD. Comparison of three ratiometric temperature readings from the Er3+ upconversion emission. Nanomaterials. 2020; 10(4): 627. https://doi.org/10.3390/nano10040627

Shi H, Zhu C, Huang J, Chen J, Chen D, Wang W, Wang F, Cao Y, Yuan X. Luminescence properties of YAG:Ce, Gd phosphors synthesized under vacuum condition and their white LED performances. Optical Materials Express. 2014; 4 (4): 649-655. https://doi.org/10.1364/OME.4.000649

Pechini M. Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Patent No. 3330697., 1967

Periša J, Ristić Z, Piotrowski W, Antić Ž, Marciniak L, Dramićanin MD. All near-infrared multiparametric luminescence thermometry using Er3+, Yb3+-doped YAG nanoparticles. RSC Advances. 2021; 11(26): 15933. https://doi.org/10.1039/d1ra01647d

Yin HJ, Feng JS, Liang N, Liu XM, Liu JX, Wang KZ, Yao CJ. Boosting Photo Upconversion in Electropolymerised Thin Film with Yb/Er Complexes. Adv. Opt. Mat. 2023; 11(6), 2202550. https://doi.org/10.1002/adom.202202550

Yoshikawa A, Boulon G, Laversenne L, Canibano H, Lebbou K, Collombet A, Guyot Y, Fukuda T. Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals. J Appl Phys. 2003; 94(9): 5479–88. https://doi.org/10.1063/1.1597763

Ćirić A, van Swieten T, Periša J, Meijerink A, Dramićanin MD. Twofold increase in the sensitivity of Er3+/Yb3+ Boltzmann thermometer. J Appl Phys. 2023; 133(19): 194501 https://doi.org/10.1063/5.0149757

Auzel F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem Rev. 2004; 104(1): 139-174. https://doi.org/10.1021/cr020357g

Ćirić A, Dramićanin MD. LumTHools - Software for fitting the temperature dependence of luminescence emission intensity, lifetime, bandshift, and bandwidth and luminescence thermometry and review of the theoretical models. J Lumin. 2022; 252: 119413. https://doi.org/10.1016/j.jlumin.2022.119413

Ćirić A, Gavrilović T, Dramićanin MD. Luminescence Intensity Ratio Thermometry with Er3+. Crystals. 2021; 11(2): 189. https://doi.org/10.3390/cryst11020189

Similar Articles

You may also start an advanced similarity search for this article.

Najčitanije od istog autora

1 2 > >>