Toplotna provodljivost i mikrostruktura Bi-Sb legura Naučni rad

Glavni sadržaj članka

Miljan Marković
Dragan Manasijević
https://orcid.org/0000-0002-7828-8994
Mirjana Milošević
https://orcid.org/0009-0002-9356-507X
Ljubiša Balanović
https://orcid.org/0000-0002-3551-6731
Uroš Stamenković
https://orcid.org/0000-0002-7579-2159
Ivana Marković
https://orcid.org/0000-0003-4431-9921

Apstrakt

Ispitivani su mikrostruktura i termičke osobine Bi-Sb legura sastava Bi79.6Sb20.4, Bi56.9Sb43.1, Bi39.8Sb60.2, Bi18.6Sb81.4. Za ispitivanje mikrostrukture pripremljenih legura korišćena je skenirajuća elektronska mikroskopija sa energetsko disperzivnom rendgenskom spektrometrijom. Svetlosno-impulsna metoda je primenjena za merenje toplotne difuzivnosti i za određivanje toplotne provodljivosti. Za određivanje gustine Bi-Sb legura korišćena je indirektna Arhimedova metoda. Dobijeni rezultati pokazuju da se gustina proučavanih legura monotono snižava sa povećanjem sadržaja antimona. Specifični toplotni kapacitet Bi-Sb legura raste sa povećanjem sadržaja Sb i sa povećanjem temperature. Toplotna difuzivnost ispitivanih legura određena je u temperaturnom intervalu od 25 do 150 °C. Toplotna difuzivnost Bi-Sb legura blago raste sa povećanjem temperature. Toplotne provodljivosti ispitivanih Bi-Sb legura su u rasponu od 3,8 do 7 W m -1 K-1, što je niže od toplotnih provodljivosti čistog bizmuta i antimona. Rezultati dobijeni u ovom radu predstavljaju doprinos boljem poznavanju toplotnih osobina Bi-Sb legura, koje su od ključnog značaja za određivanje mogućnosti njihove praktične primene.

Detalji članka

Broj časopisa

Rubrika

Inženjerstvo materijala - Metalni materijali

Kako citirati

[1]
M. Marković, D. Manasijević, M. Milošević, L. Balanović, U. Stamenković, and I. Marković, “Toplotna provodljivost i mikrostruktura Bi-Sb legura : Naučni rad”, Hem Ind, vol. 78, no. 1, pp. 41–50, Jan. 2024, doi: 10.2298/HEMIND230829002M.

Funding data

Reference

Spinelli JE, Silva BL, Garcia A. Microstructure, phases morphologies and hardness of a Bi–Ag eutectic alloy for high temperature soldering applications. Mater Des. 2014; 58: 338-356. https://doi.org/10.1016/j.matdes.2014.02.026

Song JM, Chuang HY, Wen TX. Thermal and tensile properties of Bi-Ag alloys. Metall Mater Trans A. 2007; 38: 1371-1375. https://doi.org/10.1007/s11661-007-9138-1

Yu M, Matsugi K, Xu Z, Choi Y, Yu J, Motozuka S, Nishimura Y, Suetsugu KI. High temperature characterization of binary and ternary Bi alloys microalloyed with Cu and Ag. Mater Trans. 2018; 59: 303-310. https://doi.org/10.2320/matertrans.MAW201710

Lee H, Choi K-S, Eom Y-S, Bae H-C, Lee JH. Sn58Bi Solder Interconnection for Low‐Temperature Flex‐on‐Flex Bonding. ETRI J. 2016; 38: 1163-1171. https://doi.org/10.4218/etrij.16.0115.0945

Goh Y, Haseeb ASMA, Sabri MFM. Effects of hydroquinone and gelatin on the electrodeposition of Sn–Bi low temperature Pb-free solder. Electrochim Acta. 2013; 90: 265-273. https://doi.org/10.1016/j.electacta.2012.12.036

Manasijević D, Balanović Lj, Marković I, Ćosović V, Gorgievski M, Stamenković U, Božinović K. Thermal transport properties and microstructure of the solid Bi-Cu alloys. Metall Mater Eng. 2022; 28(3): 503-514. https://doi.org/10.30544/841

ASM International Handbook Committee: Properties and selection: nonferrous alloys and special-purpose materials, 2, ASM international, Materials Park, OH, 1990. https://doi.org/10.31399/asm.hb.v02.9781627081627

Okamoto H. Bi-Sb (bismuth-antimony). JPED. 2012; 33: 493-494. https://doi.org/10.1007/s11669-012-0092-2

Rodriguez JE, Cadavid D. Synthesis and thermoelectric properties of polycrystalline Bi-Sb alloys. Rev Fis. 2007; 34: 19-27. https://revistas.unal.edu.co/index.php/momento/article/view/40558

Kitagawa H, Noguchi H, Kiyabu T, Itoh M, Noda Y. Thermoelectric properties of Bi–Sb semiconducting alloys prepared by quenching and annealing. J Phys Chem Solids. 2004; 65(7): 1223-1227. https://doi.org/10.1016/j.jpcs.2004.01.010

Dutta S, Shubha V, Ramesh TG, D'Sa F. Thermal and electronic properties of Bi1− xSbx alloys. J Alloys Compd. 2009; 467(1-2): 305-309. https://doi.org/10.1016/j.jallcom.2007.11.146

Ibrahim AM, Thompson DA. Thermoelectric properties of BiSb alloys. Mater Chem Phys. 1985; 12(1): 29-36. https://doi.org/10.1016/0254-0584(85)90034-3

Yim WM, Amith A. Bi-Sb alloys for magneto-thermoelectric and thermomagnetic cooling. Solid State Electron. 1972; 15: 1141-1165. https://doi.org/10.1016/0038-1101(72)90173-6

Tanuma S. Thermoelectric power of bismuth-antimony alloys. J Phys Soc Jpn. 1961; 16: 2354-2355. https://doi.org/10.1143/JPSJ.16.2354

Touloukian YS, Powell RW, Ho CY, Klemens PG. Thermal Conductivity of Metallic Elements and Alloys. Washington: New York. 1970. http://poplab.stanford.edu/pdfs/Touloukian-v1ThermalConductivityMetallicElementsAlloys-tprc70.pdf

Parker WJ, Jenkins RJ, Butler CP, Abbott GL. Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity J Appl Phys. 1961; 32: 1679-1684. https://doi.org/10.1063/1.1728417

Manasijević D, Balanović Lj, Marković I, Gorgievski M, Stamenković U, Božinović K. Microstructure, melting behavior and thermal conductivity of the Sn–Zn alloys Thermochim Acta. 2021; 702: 178978. https://doi.org/10.1016/j.tca.2021.178978

Manasijević D, Balanović Lj, Marković I, Gorgievski M, Stamenković U, Đorđević A, Minić D, Ćosović V. Structural and thermal properties of Sn–Ag alloys Solid State Sci. 2021; 119: 106685. https://doi.org/10.1016/j.solidstatesciences.2021.106685

Božinović KN, Manasijević DM, Balanović LjT, Gorgievski MD, Stamenković US, Marković MS, Mladenović ZD. Study of microstructure, hardness and thermal properties of Sn-Bi alloys/Ispitivanje mikrostrukture, tvrdoce i termijskih karakteristika legura u sistemu Sn-Bi. Hem Ind. 2021; 75(4): 227-240 https://doi.org/10.2298/HEMIND210119021B

Lukas HL, Fries SG, Sundman B. Computational Thermodynamics: the Calphad Method, First edition, Cambridge University Press, Cambridge, 2007. https://doi.org/10.1017/CBO9780511804137

Wang L, Xian AP. Density measurement of Sn-40Pb, Sn-57Bi, and Sn-9Zn by indirect Archimedean method, J Electron Mater. 2005; 34: 1414-1419. https://doi.org/10.1007/s11664-005-0199-x

Kroupa A, Dinsdale AT, Watson A, Vrestal J, Vizdal J, Zemanova A. The development of the COST 531 lead-free solders thermodynamic database JOM. 2007; 59: 20-25. https://doi.org/10.1007/s11837-007-0084-6

Similar Articles

You may also start an advanced similarity search for this article.

Najčitanije od istog autora