Toplotna provodljivost i mikrostruktura Bi-Sb legura Naučni rad
Glavni sadržaj članka
Apstrakt
Ispitivani su mikrostruktura i termičke osobine Bi-Sb legura sastava Bi79.6Sb20.4, Bi56.9Sb43.1, Bi39.8Sb60.2, Bi18.6Sb81.4. Za ispitivanje mikrostrukture pripremljenih legura korišćena je skenirajuća elektronska mikroskopija sa energetsko disperzivnom rendgenskom spektrometrijom. Svetlosno-impulsna metoda je primenjena za merenje toplotne difuzivnosti i za određivanje toplotne provodljivosti. Za određivanje gustine Bi-Sb legura korišćena je indirektna Arhimedova metoda. Dobijeni rezultati pokazuju da se gustina proučavanih legura monotono snižava sa povećanjem sadržaja antimona. Specifični toplotni kapacitet Bi-Sb legura raste sa povećanjem sadržaja Sb i sa povećanjem temperature. Toplotna difuzivnost ispitivanih legura određena je u temperaturnom intervalu od 25 do 150 °C. Toplotna difuzivnost Bi-Sb legura blago raste sa povećanjem temperature. Toplotne provodljivosti ispitivanih Bi-Sb legura su u rasponu od 3,8 do 7 W m -1 K-1, što je niže od toplotnih provodljivosti čistog bizmuta i antimona. Rezultati dobijeni u ovom radu predstavljaju doprinos boljem poznavanju toplotnih osobina Bi-Sb legura, koje su od ključnog značaja za određivanje mogućnosti njihove praktične primene.
Detalji članka
Broj časopisa
Rubrika
Ovaj rad je pod Creative Commons Aуторство-Nekomercijalno-Bez prerade 4.0 Internacionalna licenca.
Kada je rukopis prihvaćen za objavlјivanje, autori prenose autorska prava na izdavača. U slučaju da rukopis ne bude prihvaćen za štampu u časopisu, autori zadržavaju sva prava.
Na izdavača se prenose sledeća prava na rukopis, uklјučujući i dodatne materijale, i sve delove, izvode ili elemente rukopisa:
- pravo da reprodukuje i distribuira rukopis u štampanom obliku, uklјučujući i štampanje na zahtev;
- pravo na štampanje probnih primeraka, reprint i specijalnih izdanja rukopisa;
- pravo da rukopis prevede na druge jezike;
- pravo da rukopis reprodukuje koristeći fotomehanička ili slična sredstva, uklјučujući, ali ne ograničavajući se na fotokopiranje, i pravo da distribuira ove kopije;
- pravo da rukopis reprodukuje i distribuira elektronski ili optički koristeći sve nosioce podataka ili medija za pohranjivanje, a naročito u mašinski čitlјivoj/digitalizovanoj formi na nosačima podataka kao što su hard disk, CD-ROM, DVD, Blu-ray Disc (BD), mini disk, trake sa podacima, i pravo da reprodukuje i distribuira rukopis sa tih prenosnika podataka;
- pravo da sačuva rukopis u bazama podataka, uklјučujući i onlajn baze podataka, kao i pravo prenosa rukopisa u svim tehničkim sistemima i režimima;
- pravo da rukopis učini dostupnim javnosti ili zatvorenim grupama korisnika na osnovu pojedinačnih zahteva za upotrebu na monitoru ili drugim čitačima (uklјučujući i čitače elektonskih knjiga), i u štampanoj formi za korisnike, bilo putem interneta, onlajn servisa, ili putem internih ili eksternih mreža.
Kako citirati
Funding data
-
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers 451-03-47/2023-01/200131
Reference
Spinelli JE, Silva BL, Garcia A. Microstructure, phases morphologies and hardness of a Bi–Ag eutectic alloy for high temperature soldering applications. Mater Des. 2014; 58: 338-356. https://doi.org/10.1016/j.matdes.2014.02.026
Song JM, Chuang HY, Wen TX. Thermal and tensile properties of Bi-Ag alloys. Metall Mater Trans A. 2007; 38: 1371-1375. https://doi.org/10.1007/s11661-007-9138-1
Yu M, Matsugi K, Xu Z, Choi Y, Yu J, Motozuka S, Nishimura Y, Suetsugu KI. High temperature characterization of binary and ternary Bi alloys microalloyed with Cu and Ag. Mater Trans. 2018; 59: 303-310. https://doi.org/10.2320/matertrans.MAW201710
Lee H, Choi K-S, Eom Y-S, Bae H-C, Lee JH. Sn58Bi Solder Interconnection for Low‐Temperature Flex‐on‐Flex Bonding. ETRI J. 2016; 38: 1163-1171. https://doi.org/10.4218/etrij.16.0115.0945
Goh Y, Haseeb ASMA, Sabri MFM. Effects of hydroquinone and gelatin on the electrodeposition of Sn–Bi low temperature Pb-free solder. Electrochim Acta. 2013; 90: 265-273. https://doi.org/10.1016/j.electacta.2012.12.036
Manasijević D, Balanović Lj, Marković I, Ćosović V, Gorgievski M, Stamenković U, Božinović K. Thermal transport properties and microstructure of the solid Bi-Cu alloys. Metall Mater Eng. 2022; 28(3): 503-514. https://doi.org/10.30544/841
ASM International Handbook Committee: Properties and selection: nonferrous alloys and special-purpose materials, 2, ASM international, Materials Park, OH, 1990. https://doi.org/10.31399/asm.hb.v02.9781627081627
Okamoto H. Bi-Sb (bismuth-antimony). JPED. 2012; 33: 493-494. https://doi.org/10.1007/s11669-012-0092-2
Rodriguez JE, Cadavid D. Synthesis and thermoelectric properties of polycrystalline Bi-Sb alloys. Rev Fis. 2007; 34: 19-27. https://revistas.unal.edu.co/index.php/momento/article/view/40558
Kitagawa H, Noguchi H, Kiyabu T, Itoh M, Noda Y. Thermoelectric properties of Bi–Sb semiconducting alloys prepared by quenching and annealing. J Phys Chem Solids. 2004; 65(7): 1223-1227. https://doi.org/10.1016/j.jpcs.2004.01.010
Dutta S, Shubha V, Ramesh TG, D'Sa F. Thermal and electronic properties of Bi1− xSbx alloys. J Alloys Compd. 2009; 467(1-2): 305-309. https://doi.org/10.1016/j.jallcom.2007.11.146
Ibrahim AM, Thompson DA. Thermoelectric properties of BiSb alloys. Mater Chem Phys. 1985; 12(1): 29-36. https://doi.org/10.1016/0254-0584(85)90034-3
Yim WM, Amith A. Bi-Sb alloys for magneto-thermoelectric and thermomagnetic cooling. Solid State Electron. 1972; 15: 1141-1165. https://doi.org/10.1016/0038-1101(72)90173-6
Tanuma S. Thermoelectric power of bismuth-antimony alloys. J Phys Soc Jpn. 1961; 16: 2354-2355. https://doi.org/10.1143/JPSJ.16.2354
Touloukian YS, Powell RW, Ho CY, Klemens PG. Thermal Conductivity of Metallic Elements and Alloys. Washington: New York. 1970. http://poplab.stanford.edu/pdfs/Touloukian-v1ThermalConductivityMetallicElementsAlloys-tprc70.pdf
Parker WJ, Jenkins RJ, Butler CP, Abbott GL. Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity J Appl Phys. 1961; 32: 1679-1684. https://doi.org/10.1063/1.1728417
Manasijević D, Balanović Lj, Marković I, Gorgievski M, Stamenković U, Božinović K. Microstructure, melting behavior and thermal conductivity of the Sn–Zn alloys Thermochim Acta. 2021; 702: 178978. https://doi.org/10.1016/j.tca.2021.178978
Manasijević D, Balanović Lj, Marković I, Gorgievski M, Stamenković U, Đorđević A, Minić D, Ćosović V. Structural and thermal properties of Sn–Ag alloys Solid State Sci. 2021; 119: 106685. https://doi.org/10.1016/j.solidstatesciences.2021.106685
Božinović KN, Manasijević DM, Balanović LjT, Gorgievski MD, Stamenković US, Marković MS, Mladenović ZD. Study of microstructure, hardness and thermal properties of Sn-Bi alloys/Ispitivanje mikrostrukture, tvrdoce i termijskih karakteristika legura u sistemu Sn-Bi. Hem Ind. 2021; 75(4): 227-240 https://doi.org/10.2298/HEMIND210119021B
Lukas HL, Fries SG, Sundman B. Computational Thermodynamics: the Calphad Method, First edition, Cambridge University Press, Cambridge, 2007. https://doi.org/10.1017/CBO9780511804137
Wang L, Xian AP. Density measurement of Sn-40Pb, Sn-57Bi, and Sn-9Zn by indirect Archimedean method, J Electron Mater. 2005; 34: 1414-1419. https://doi.org/10.1007/s11664-005-0199-x
Kroupa A, Dinsdale AT, Watson A, Vrestal J, Vizdal J, Zemanova A. The development of the COST 531 lead-free solders thermodynamic database JOM. 2007; 59: 20-25. https://doi.org/10.1007/s11837-007-0084-6