Sistematski pristup projektovanju distribuiranih sistema za prečišćavanje otpadnih voda Naučni rad

Glavni sadržaj članka

Alaa Eid
https://orcid.org/0009-0007-1132-7462
Galal Abdel-Aleem
https://orcid.org/0009-0001-9138-8113

Apstrakt

Zbog sve strožije regulative u zaštiti životne sredine, troškovi rukovanja različitim tokovima otpada postepeno rastu. Zbog toga je ključno minimizirati nepotrebno spajanje tokova prilikom projektovanja distribuiranih sistema za prečišćavanje otpadnih voda, kako bi se smanjio ukupni protok tretiranih voda kad god je to moguće. U distribuiranom sistemu za prečišćavanje otpadnih voda, tokovi otpadnih voda se odvajaju za tretman i kombinuju samo kada je to potrebno. Ovo rezultira značajnim smanjenjem ukupnog protoka u poređenju sa tradicionalnim centralizovanim sistemima za tretman gde se svi tokovi spajaju pre tretmana. Dizajn distribuiranog sistema za prečišćavanje otpadnih voda može se postići korišćenjem pinč (engleski pinch) analize i pristupa matematičkog programiranja. Ovaj rad predlaže jednostavan pristup za projektovanje takvih mreža, sa više koraka u procesu projektovanja: Prvo se određuje primarna funkcija svake jedinice za tretman. Zatim, primenom pinč (eng. pinch) metode se za svaku jedinicu utvrđuje najmanja količina za tretman za primarni zagađivač. Konačno, bira se grupa od tri jedinice, pri čemu se pinč tok delimično tretira, tokovi iznad pinč toka potpuno obrađuju, a tokovi ispod pinča se potpuno zaobilaze. Dve studije slučaja iz literature pokazuju održivost i efikasnost ovog pristupa.

Detalji članka

Broj časopisa

Rubrika

Specijalan broj: Tretman otpadnih voda - Metode, materijali i procesi

Kako citirati

[1]
A. Eid and G. Abdel-Aleem, “Sistematski pristup projektovanju distribuiranih sistema za prečišćavanje otpadnih voda: Naučni rad”, Hem Ind, vol. 78, no. 2, pp. 75–85, May 2024, doi: 10.2298/HEMIND230722006A.

Reference

Wang YP, Smith R. Design of distributed effluent treatment systems. Chem Eng Sci. 1994; 49(18): 3127–3145, https://doi.org/10.1016/0009-2509(94)E0126-B.

Kuo WCJ, Smith R. Designing for the interactions between water-use and effluent treatment. Chem Eng Res Design. 1998;76(3): 287–301, https://doi.org/10.1205/026387698524938.

Ng DKS, Foo DCY, Tan RR. Targeting for total water network. 1. Waste stream identification. Ind and Eng Chem Res. 2007; 46: 9107-9113, https://doi.org/10.1021/ie071095h.

Bandyopadhyay S. Targeting minimum waste treatment flow rate. Chem Eng J. 2009; 152(2-3): 367-375, https://doi.org/10.1016/j.cej.2009.04.060

Liu ZH, Shi J, Liu ZY. Design of wastewater treatment networks with single contaminant. Chem Eng J. 2012; 192: 315-325, https://doi.org/10.1016/j.cej.2012.03.060.

Shi J, Liu ZY. A simple method for design of distributed wastewater treatment systems with multiple contaminants. AIChE J. 2011; 57(11): 3226-3232, https://doi.org/10.1002/aic.12510.

Liu ZH, Shi J, Liu ZY. Design of distributed wastewater treatment systems with multiple contaminants. Chem Eng J. 2013; 228: 381–391, https://doi.org/10.1016/j.cej.2013.04.112

Li AH, Yang YZ, Liu ZY. A numerical-indicator-based method for design of distributed wastewater treatment systems with multiple contaminants. AIChE J. 2015; 61(10): 3223–3231, https://doi.org/10.1002/aic.14863.

Karuppiah R, Grossmann IE.Global optimization for the synthesis of integrated water systems in chemical processes. Compu Chem Eng. 2006; 30(4): 650–673, https://doi.org/10.1016/j.compchemeng.2005.11.005.

Castro PM, Matos HA, Novais AQ. An efficient heuristic procedure for the optimal design of wastewater treatment systems. Resour Conserv Recy. 2007; 50(2): 158–185 https://doi.org/10.1016/j.resconrec.2006.06.013 .

Statyukha G, Kvitka O, Dzhygyrey I, Jezowski J. A simple sequential approach for designing industrial wastewater treatment networks. J Clean Prod. 2008; 16(2): 215–224, https://doi.org/10.1016/j.jclepro.2006.09.002.

Tudor R, Lavric V. Optimization of total networks of water-using and treatment units by genetic algorithms. Ind Eng Chem Res.2010; 49(8): 3715–3731, https://doi.org/10.1021/ie901687z.

Yenkie KM, Pimentel J, Orosz Á, Cabezas H, Friedler F. The P-graph approach for systematic synthesis of wastewater treatment networks. AIChE J. 2021; 67(7), https://doi.org/10.1002/aic.17253 .

Padrón-Páez JI, Prado-Rubio OA, Carvalho A, Román-Martínez A. NLP optimization for the design of sustainable wastewater treatment networks. Comput Aided Chem Eng. 2016; 38: 1503–1508, https://doi.org/10.1016/B978-0-444-63428-3.50255-1.

Zeferino JA, Cunha MC, & Attunes AP. Adapted optimization model for planning regional wastewater systems: Case study. Water Sci Tech. 2017; 76(5): 1196–1205 https://doi.org/10.2166/wst.2017.302.

Fan XY, Klemeš JJ, Jia X, Liu ZY. An iterative method for design of total water networks with multiple contaminants. J Clean Prod. 2019; 240, https://doi.org/10.1016/j.jclepro.2019.118098.

Denysiuk R, Santo IE, Costa L. Wastewater treatment plant design: Optimizing multiple objectives. In: Proceedings of the 7th International Conference on Operations Research and Enterprise Systems ICORES 2018, Funchal, Madeira, Portugal, 327–334, https://doi.org/10.5220/0006660303270334.

Padrón-Páez JI, Almaraz SDL, Román-Martínez A. Sustainable wastewater treatment plants design through multiobjective optimization. Comput Chem Eng. 2020; 140 https://doi.org/10.1016/j.compchemeng.2020.106850.

Hernández-Chover V, Castellet-Viciano L, Fuentes R, Hernández-Sancho F. Circular economy and efficiency to ensure the sustainability in the wastewater treatment plants. J Clean Prod. 2023; 384, https://doi.org/10.1016/j.jclepro.2022.135563.

Lim SR, Park D, Park JM. Environmental and economic feasibility study of a total wastewater treatment network system. J Environ Manag. 2008; 88(3): 564–575 https://doi.org/10.1016/j.jenvman.2007.03.022.

Similar Articles

You may also start an advanced similarity search for this article.