Procena veličine zone ugroženosti nastale akcidentom prilikom transportovanja opasne hemijske supstancije

Glavni sadržaj članka

Aleksandar Ivković
https://orcid.org/0009-0004-6499-4734
Srećko Ilić
https://orcid.org/0000-0002-6093-3801
Radovan Radovanović
https://orcid.org/0000-0001-7302-8328
Nevena Mladenović (Ignjatov)
https://orcid.org/0009-0002-1168-210X

Apstrakt

Zagađenje vazduha je centralna tema svih diskusija koje su u vezi sa zaštitom životne sredine. Modelovanje širenja zagađenja je jedan od načina kako možemo da predvidimo putanje širenja i nivoe zagađenja, te da delujemo u cilju suzbijanja ovog problema. U radu će biti izvršeno modelovanje disperzije čestica amonijaka kroz vazduh korišćenjem ALOHA (Areal Locations of Hazardous Atmospheres) softverskog alata koji se zasniva na Gausovom modelu disperzije čestica. Modelovanje u radu će se zasnivati na podacima vezanim za akcident koji se dogodio u decembru 2022. godine u okolini grada Pirota, kao i na stvarnim meteorološkim podacima koji su bili aktuelni u vremenskom periodu u kom se odigravao akcident i širenje zagađenja. Kao rezultat modelovanja, dobićemo zone sa povećanom koncentracijom amonijaka. Njihova površina zavisiće od koncentracije amonijaka na izvorištu i meteoroloških uslova u periodu curenja opasne materije. Cilj rada je da ukaže na potrebu za uvođenjem modelovanja u operativne centre jedinica MUP-a zaduženih za vanredne situacije, kao za i uvođenjem dodatnih bezbednosnih protokola prilikom transporta opasnih materija.

Detalji članka

Broj časopisa

Rubrika

Hemijsko inženjerstvo - Modelovanje procesa

Kako citirati

[1]
A. . Ivković, S. Ilić, R. Radovanović, and N. . Mladenović (Ignjatov), “Procena veličine zone ugroženosti nastale akcidentom prilikom transportovanja opasne hemijske supstancije”, Hem Ind, vol. 78, no. 2, pp. 95–104, Jun. 2024, doi: 10.2298/HEMIND230715012I.

Funding data

Reference

Wang R, Xu K, Xu V, Wu Y. Study on prediction model of hazardous chemical accidents. J Loss Prev Proccess Ind. 2020; 68: 104183 https://doi.org/10.1016/j.jlp.2020.104183.

Zhao L, Qian Y, Hu Q-M, Jiang R, Li M, Wang X. An Analysis of Hazardous Chemical Accidents in China between 2006 and 2017. Sustainability. 2018; 10(8); 2935 https://doi.org/10.3390/su10082935.

Zhang W, Cheng W, Gai W. Hazardous Chemicals Road Transportation Accidents and the Corresponding Evacuation Events from 2012 to 2020 in China: A Review. Int J Environ Res Public Health. 2022; 19(22); 15182 https://doi.org/10.3390/ijerph192215182.

Jabbari M, Atabi F, Ghorbani R. Key airborne concentrations of chemicals for emergency response planning in HAZMAT road transportation- margin of safety or survival. J Loss Prev Proccess Ind. 2020; 65: 104139 https://doi.org/10.1016/j.jlp.2020.104139.

Lecue M, Darbra RM. Accidents in European ports involving chemical substances: Characteristics and trends. Safety Science. 2019; 115; 278-284 https://doi.org/10.1016/j.ssci.2019.02.015.

Jusufranić I, Nešković S, Ketin S, Biočanin R, Management of Transport of Hazardous Materials. Fresenius Environ Bull. 2018; 4325-4331 ISSN: 10184619.

Bondžić J, Sremački M, Popov S, Mihajlović I, Vujić B, Petrović M. Exposure to hazmat road accidents – Toxic release simulation and GIS-based assessment method. Journal of Environmental Management. 2021; 293: 34098356 https://doi.org/10.1016/j.jenvman.2021.112941.

Salmond NH, Wing SR. Sub-lethal and lethal effects of chronic ammonia exposure and hypoxia on a New Zealand bivalve. Journal of Experimental Marine Biology and Ecology. 2022; 549: 151696 https://doi.org/10.1016/j.jembe.2022.151696.

Stojadinović DJ, Đorđević AV, Krstić IM, Radosavljević JM. Atmospheric release of organic solvents due to hazardous events in the paints and varnishes industry. Chem Ind. 2023; 77(2): 111-127 https://doi.org/10.2298/HEMIND220909002S.

Yoo B, Choi SD. Emergency Evacuation Plan for Hazardous Chemicals Leakage Accidents Using GIS-based Risk Analysis Techniques in South Korea. Int J Environ Res Public Health. 2019; 16(11): 1948 https://doi.org/10.3390/ijerph16111948.

Nikezić DP, Ramadani UR, Radivojević DS, Lazović IM, Mirkov NS. Deep Learning Model for Global Spatio-Temporal Image Prediction. Mathematics. 2022; 10(18): 3392 https://doi.org/10.3390/math10183392.

Macêdo MFM, Ramos ALD. Vehicle atmospheric pollution evaluation using AERMOD model at avenue in a Brazilian capital city. Air Qual Atmos Heal. 2020; 13(3): 309-320 https://doi.org/10.1007/s11869-020-00792-z.

Sharipov D, Muradov F, Akhmedov D. Numerical Modeling Method For Short-Term Air. Applied Mathematics E-notes. 2018; 575-584 ISSN 1607-2510.

Zhou L, Li Z, Meng L, Li T, Domingos Raimundo Lopes N. Environmental Risk Assessment for PM2.5 Pollution from Non-Point Sources in the Mining Area Based on Multi-Source Superposition and Diffusion. Sustainability. 2021; 13(12): 6619 https://doi.org/10.3390/su13126619.

Brzozowska L. Computer simulation of impacts of a chlorine tanker truck accident. Transportation research part D: transport and environment. 2016; 43: 107-122 https://doi.org/10.1016/j.trd.2015.12.001.

Yang Z, Yao Q, Buser MD, Alfieri JG, Li H, Torrents A, McConnell LL, Downey PM, Hapeman CJ. Modification and validation of the Gaussian plume model (GPM) to predict ammonia and particulate matter dispersion. Atmospheric Pollution Research. 2020; 11(7): 1063-1072 https://doi.org/10.1016/j.apr.2020.03.012.

Cao B, Cui W, Chen C, Chen Y. Development and uncertainty analysis of radionuclide atmospheric dispersion modeling codes based on Gaussian plume model. Energy. 2020; 194: 116925 https://doi.org/10.1016/j.energy.2020.116925.

Li H, Zhang J, Yi J. Computational source term estimation of the Gaussian puff dispersion. Soft Computing. 2019; 23: 59-75 https://doi.org/10.1007/s00500-018-3440-2.

Mohamed F, Fadzil SM, Siong KK. A Study on the Atmospheric Dispersion of Radionuclide Released from TRIGA MARK II Reactor using Gaussian Plume Model. Sains Malaysiana. 2019; 48(9): 2021-2028 http://doi.org/10.17576/jsm-2019-4809-23.

Lazaridis M. First Principles of Meteorology and Air Pollution. New York: Springer; 2011: e-ISBN 201-232 https://doi.org/10.1007/978-94-007-0162-5.

Jaćimovski S, Miladinović S, Radovanović R, Ilijazi V. Use of Gaussian Mathematical Model in the Distribution of Sulphur Dioxide into the Atmosphere from Point Source. Technical Gazette. 2017; 24(1): 157-162 https://doi.org/10.17559/TV-20150716093937.

Tahmid M, Dey S, Syeda SR. Mapping human vulnerability and risk due to chemical accidents. J Loss Prev Proccess Ind. 2020; 68: 104289 https://doi.org/10.1016/j.jlp.2020.104289.

Lyu S, Zhang S, Huang X, Peng S, Li J. Investigation and modeling of the LPG tank truck accident in Wenling, China. Process Safety and Environmental Protection. 2022; 157: 493-508 https://doi.org/10.1016/j.psep.2021.10.022.

Orozco JL, Van Caneghem J, Hens L, González L, Lugo R, Díaz S, Pedroso I. Assessment of an ammonia incident in the industrial area of Matanzas. Journal of cleaner production. 2019; 222: 934-941 https://doi.org/10.1016/j.jclepro.2019.03.024.

Hoscan O, Cetinyokus S. Determination of emergency assembly point for industrial accidents with AHP analysis. J Loss Prev Proccess Ind. 2021; 69: 104386 https://doi.org/10.1016/j.jlp.2020.104386.

Iskender H. Risk assessment for an acetone storage tank in a chemical plant in Istanbul, Turkey: Simulation of dangerous scenarios. Process Safety Progress. 2021; 40(4): 234-239 https://doi.org/10.1002/prs.12252.

Terzioglu L, Iskender H. Modeling the consequences of gas leakage and explosion fire in liquefied petroleum gas storage tank in Istanbul technical university, Maslak campus. Process Safety Progress. 2021; 40(4): 319-326 https://doi.org/10.1002/prs.12263.

Meteoblue – weather close to you. https://www.meteoblue.com. Accessed 25.04.2023.

Weather2Umbrella. https://www.weather2umbrella.com. Accessed 25.04.2023.

Similar Articles

You may also start an advanced similarity search for this article.