Sagorevanje čvrstih otpadnih materija u fluidizovanom sloju za generisanje održive energije Naučni rad

Glavni sadržaj članka

Milica R. Mladenović
https://orcid.org/0000-0003-1924-0437
Biljana S. Vučićević
https://orcid.org/0000-0002-5817-0171
Ana D. Marinković
https://orcid.org/0000-0001-7730-9135
Jovana Z. Buha Marković
https://orcid.org/0000-0002-5820-6541

Apstrakt

Istraživanje alternativnih opcija za rešavanje aktuelne globalne energetske krize uzimajući u obzir zabrinutost za životnu sredinu i klimatske promene, kao i rešavanje naglo rastuće potražnje za energijom postaje suštinska neophodnost. Ova potreba je dodatno naglašena značajnim oslanjanjem Republike Srbije na uvozne energente i strateškim fokusom njenog energetskog sektora, koji podrazumeva racionalno korišćenje energetskih resursa, korišćenje obnovljivih izvora energije i upravljanje otpadom uz zadovoljavanje ekoloških propisa. Upotreba niskokaloričnih i otpadnih materijala u kombinaciji sa tehnologijom sagorevanja u fluidizovanom sloju je metod za sinergijsko postizanje svih gore navedenih ciljeva. U radu su prikazani eksperimentalni rezultati sagorevanja više vrsta čvrstog otpada (kolubarski otpadni ugalj, papirni mulj i ljuske lešnika), sprovedeni u industrijsko-demonstracionom i eksperi­mentalnom kotlu sa fluidizovanim slojem (kapaciteta do 500 kW). Spaljivanje ovog otpada ima niz prednosti, uključujući iskorišćenje značajne preostale energije u otpadu i minimiziranje ukupne količine otpada. U radu su određeni temperaturni profili u fluidizovanom sloju u ložištu, sastav dimnih gasova na izlazu iz ložišta, kao i protoci vazduha za fluidizaciju i goriva, minimalna brzina fluidizacije, stepen fluidizacije, maksimalna snaga ložišta i predata toplota, za ispitivana goriva. Na osnovu ovih rezultata data je procena kvaliteta sagorevanja otpadnih goriva u fluidizovanom sloju i mogućnosti iskorišćenja njihovog energetskog potencijala.

Detalji članka

Broj časopisa

Rubrika

Višefazni sistemi u hemijskom inženjerstvu

Biografije autora

Biljana S. Vučićević , Univerzitet u Beogradu, Institut za nuklearne nauke "Vinča"-Institut od nacionalnog značaja za Republiku Srbiju, Laboratorija za termotehniku i energetiku, Beograd, Srbija

Viši naučni saradnik

Ana D. Marinković , Univerzitet u Beogradu, Institut za nuklearne nauke "Vinča"-Institut od nacionalnog značaja za Republiku Srbiju, Laboratorija za termotehniku i energetiku, Beograd, Srbija

stručni savetnik

Jovana Z. Buha Marković , Univerzitet u Beogradu, Institut za nuklearne nauke "Vinča"-Institut od nacionalnog značaja za Republiku Srbiju, Laboratorija za termotehniku i energetiku, Beograd, Srbija

istraživač saradnik

Kako citirati

[1]
M. R. Mladenović, B. S. Vučićević, A. D. Marinković, and J. Z. Buha Marković, “Sagorevanje čvrstih otpadnih materija u fluidizovanom sloju za generisanje održive energije: Naučni rad”, Hem Ind, vol. 78, no. 3, pp. 173–185, May 2024, doi: 10.2298/HEMIND230606008M.

Funding data

Reference

Leckner B. Fluidized Bed Combustion. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. J. Reedijk (Ed.), Elsevier; 2016:

Mladenović MR. Research of thermomechanical proces during decomposition of high density liquid fuel in the fluidized bed (in Serbian), Ph.D. Thesis, University of Belgrade, Faculty of Mechanical Engineering, 2013.

Grubor BD, Dakić DV, Nemoda SD, Mladenović MR, Paprika MJ, Oka SN. Research of the fluidized bed combustion in the laboratory for thermal engineering and energy: Part A: Achievements in targeted fundamenal research. Therm Sci. 2019; 23: S1637-S1653 https://dx.doi.org/10.2298/TSCI180725289G.

Ministry of Agriculture, Forestry and Water Management of the Republic of Serbia, Information on hazelnuts, 2019, http://www.minpolj.gov.rs/download/informacija-o-lesniku-2019/

Rocha S, Candia O, Valdebenito F, Flavio Espinoza-Monje J, Azócar L. Biomass quality index: Searching for suitable biomass as an energy source in Chile. Fuel. 2020; 264: 116820 https://doi.org/10.1016/j.fuel.2019.116820.

Mladenović MR, Dakić DV, Nemoda SĐ, Paprika MJ, Komatina MS, Repić BS, Erić AM. The combustion of biomass - The impact of its types and combustion technologies on the emission of nitrogen oxide. Hem Ind. 2016; 70: 287-298 https://dx.doi.org/10.2298/HEMIND150409033M.

Mladenović M, Nemoda S, Dakić D, Milijana P, Đurović D, Repić B. Mogućnosti sagorevanja kontaminirane zrnaste biomase i drugih ostataka poljoprivredne proizvodnje u fluidizovanom sloju. Cont. Agr. Engng. 2013; 39: 213-220

ISO 1822:2015, Solid Biofuels - Determination of Ash Content, International Organization for Standardization (2015)

ISO 18134-1:2015, Solid Biofuels - Determination of Moisture Content - Oven Dry Method - Total Moisture - Reference Method (2015)

ASTM D7582-12: Standard test methods for proximate analysis of coal and coke by macro thermogravimetric analysis (2012)

ISO 16948: 2015 Solid Biofuels - Determination of Total Content of Carbon, Hydrogen and Nitrogen (2015)

ASTM D5373-14: Standard test methods for determination of carbon, hydrogen and nitrogen in analysis samples of coal and carbon in analysis samples of coal and coke (2014)

ASTM D5016-08: Standard test method for total sulfur in coal and coke combustion residues using a high-temperature tube furnace combustion method with infrared absorption (2008)

ASTM D3176-09: Standard practice for ultimate analysis of coal and coke (2009)

ISO 540:2008, Hard coal and coke – Determination of ash fusibility (2008)

SRPS EN ISO 21404:2020, Solid biofuels - Determination of ash melting behaviour

Demirbaş A. Fuel Characteristics of Olive Husk and Walnut, Hazelnut, Sunflower, and Almond Shells. Energy Sources. 2002; 24: 215-221 https://doi.org/10.1080/009083102317243601.

Bakisgan C, Dumanli AG, Yürüm Y. Trace elements in Turkish biomass fuels: Ashes of wheat straw, olive bagasse and hazelnut shell. Fuel. 2009; 88: 1842-1851 https://doi.org/10.1016/j.fuel.2009.04.[027.

ISO 1953:1994: Hard Coals - Size Analysis (1994)

SRPS B.H8.340:1988, Determination of bulk density in a small container

Yin, C., 5 - Biomass co-firing, in Biomass Combustion Science, Technology and Engineering, L. Rosendahl, Editor. 2013, Woodhead Publishing. p. 84-105. https://doi.org/10.1533/9780857097439.2.84

Mladenović MR, Dakić DV, Nemoda SDJ, Mladenović RV, Erić AM, Repić BS, Komatina MS. Combustion of low grade fractions of Lubnica coal in fluidized bed. Therm Sci. 2012; 16: 297-311 https://dx.doi.org/10.2298/TSCI1201297M.

Regulation on limit values of emissions of pollutants into the air from combustion plants ("Official Gazette of RS", no. 6/2016 and 67/2021),

Caillat, S. and E. Vakkilainen, 9 - Large-scale biomass combustion plants: an overview, in Biomass Combustion Science, Technology and Engineering, L. Rosendahl, Editor. 2013, Woodhead Publishing. p. 189-224. https://doi.org/10.1533/9780857097439.3.189

Moradian, F. (2016) Ash Behavior in Fluidized-Bed Combustion and Gasification of Biomass and Waste Fuels : Experimental and Modeling Approach. PhD dissertation. Högskolan i Borås. Available at: https://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-9563

Mladenović M, Paprika M, Marinković A. Denitrification techniques for biomass combustion. Renew Sustain Energy Rev. 2018; 82: 3350-3364 https://dx.doi.org/10.1016/j.rser.2017.10.054.

Baker CGJ, McKenzie KA. Energy Consumption of Industrial Spray Dryers. Drying Technol. 2005; 23: 365-386 https://doi.org/10.1081/DRT-200047665.

Oka S. Fluidized Bed Combustion, (Ed.), CRC Press; 2003.

Similar Articles

You may also start an advanced similarity search for this article.