Mehanička svojstva površinski modifikovane legure magnezijuma AZ61 sa nanočesticama aluminijum oksida i titanijum dioksida obradom putem tehnike trenja sa mešanjem Stručni rad

Glavni sadržaj članka

Sundaraselvan Sundaresan
https://orcid.org/0000-0001-6324-6487
Senthilkumar Natarajan
https://orcid.org/0000-0002-2441-1061
Sathish Selvaraj
https://orcid.org/0000-0003-1880-4122
Chandrasekar Gopalsamy
https://orcid.org/0000-0001-5526-5573

Apstrakt

U ovom radu su prikazani rezultati istraživanja mehaničkih osobina površinski modifikovane legure magnezijuma AZ61, ojačane nanočesticama Al2O3 i TiO2 primenom tehnike trenja sa mešanjem (engl. friction stir processing - FSP). Površinski modifikovane legure AZ61 su proizvedene dodavanjem različitih količina nanočestica Al2O3 i TiO2 (5, 10 i 15 vol.%). Mikrostruktura dobijenih površinskih kompozita pokazuje ujednačenu disperziju dodatih nanočestica, što je rezultiralo poboljšanjem njihovih mehaničkih svojstava primenom FSP. Ojačavanjem legure nanočesticama TiO2 krajnja zatezna, udarna i mikro-tvrdoća su poboljšane za 20, 45 i 67 %, redom, u poređenju sa livenom legurom. Rezultati ove studije ukazuju da ojačana legura AZ61 Mg može biti potencijalni materijal za primenu u automobilskoj industriji, jer poseduje veliku čvrstoću i malu specifičnu težinu.

Detalji članka

Broj časopisa

Rubrika

Inženjerstvo materijala - Kompoziti

Kako citirati

[1]
S. Sundaresan, S. . Natarajan, S. . Selvaraj, and C. . Gopalsamy, “Mehanička svojstva površinski modifikovane legure magnezijuma AZ61 sa nanočesticama aluminijum oksida i titanijum dioksida obradom putem tehnike trenja sa mešanjem: Stručni rad”, Hem Ind, vol. 78, no. 2, pp. 87–94, Jun. 2024, doi: 10.2298/HEMIND230530009S.

Reference

Huang, S.J, Subramani, M, Chiang, CC. Effect of hybrid reinforcement on microstructure and mechanical properties of AZ61 magnesium alloy processed by stir casting method.Compos Commun. 2021; 25: 100772. https://doi.org/10.1016/j.coco.2021.100772

Billard, A., Maury, F., Aubry, P., Balbaud-Célérier, F., Bernard, B., Lomello, F., Maskrot, H., Meillot, E., Michau, A. and Schuster, F. Emerging processes for metallurgical coatings and thin films. CR Phys. 2018: 19; 755-768.https://doi.org/10.1016/j.crhy.2018.10.005

Mahoney MW, Binget WH, Mishra RS. Microstructural Modification and Resultant Properties of Friction Stir Processed Cast NiAl Bronze. Mater Sci Forum. 2003; 426: 2843-2853. https://doi.org/10.4028/www.scientific.net/MSF.426-432.2843

Ammouri A H, Kridli G, Ayoub G, Hamade RF. Relating grain size to the Zener–Hollomon parameter for twin-roll-cast AZ31B alloy refined by friction stir processing. J Mater Process Technol. 2015; 222: 301-306.https://doi.org/10.1016/j.jmatprotec.2015.02.037

Xue P, Xiao BL, Ma ZY. Enhanced strength and ductility of friction stir processed Cu–Al alloys with abundant twin boundaries.Scr Mater. 2013; 68: 751-754. https://doi.org/10.1016/j.scriptamat.2013.01.003

Chai F, Zhang D, Li Y, Microstructures and tensile properties of submerged friction stir processed AZ91 magnesium alloy. J Magnes Alloy. 2015; 3: 203–209. https://doi.org/10.1016/j.jma.2015.08.001

Patel V, Li W, Vairis A, Badheka V. Recent development in friction stir processing as a solid-state grain refinement technique: microstructural evolution and property enhancement.Crit Rev Solid State Mater Sci. 2019; 44: 378-426. https://doi.org/10.1080/10408436.2018.1490251

Satish Kumar T, Shalini S, Thankachan T. Friction stir processing based surface modification of AZ31 magnesium alloy. Mater Manuf Process. 2023; 38(11): 1426-1435. https://doi.org/10.1080/10426914.2023.2165670

Aatthisugan I, Rose AR, Jebadurai DS. Mechanical and wear behaviour of AZ91D magnesium matrix hybrid composite reinforced with boron carbide and graphite.J Magnes Alloy. 2017; 5: 20-25. https://doi.org/10.1016/j.jma.2016.12.004

Balaji E, Sathiya Moorthy R. Investigation on Mechanical and Wear Properties of ZE43 Magnesium Composites Reinforced with Silicon Nitride by Friction Stir Processing. Silicon. 2022; 6: 11881-11890. https://doi.org/10.1007/s12633-022-01914-1

Sagar P, Handa A, Kumar G. Metallurgical, mechanical and tribological behavior of Reinforced magnesium-based composite developed Via Friction stir processing. Proc Inst Mech Eng E: 2022; 236: 1440-1451. https://doi.org/10.1177/09544089211063099

Adetunla A, Akinlabi E. Influence of reinforcements in friction stir processed magnesium alloys: insight in medical applications. Mater Res Express. 2018; 6: 025406. https://doi.org/10.1088/2053-1591/aaeea8

Gobara M, Shamekh M, Akid R. Improving the corrosion resistance of AZ91D magnesium alloy through reinforcement with titanium carbides and borides. J Magnes Alloy. 2015; 39: 112-120. https://doi.org/10.1016/j.jma.2015.03.002

Gangil N, Nagar H, Mohammed SMAK, Singh D, Siddiquee AN, Maheshwari S, Chen DL. Fabrication of magnesium–NiTip composites via friction stir processing: Effect of tool profile. Metals. 2020; 10: 1425. https://doi.org/10.3390/met10111425

Dinaharan I, Zhang S, Chen G, Shi Q. Titanium particulate reinforced AZ31 magnesium matrix composites with improved ductil¬ity prepared using friction stir processing. Mater Sci Eng. 2020; 772: 138793. https://doi.org/10.1016/j.msea.2019.138793

Das U, Toppo V. Effect of Tool Rotational Speed on Temperature and Impact. Mater Today Proc. 2018; 5: 6170-6175. https://doi.org/10.1016/j.matpr.2017.12.223

Thirumalvalavan S, Senthilkumar N, Experimental Investigation and Optimization of HVOF Spray parameters on wear resistance behaviour of Ti-6Al-4V Alloy, ,C R Acad Bulg Sci.2019; 72: 665-674. https://doi.org/10.7546/CRABS.2019.05.15

Similar Articles

You may also start an advanced similarity search for this article.