Eksperimentalna istraživanja i modelovanje prenosa mase i hidrodinamike u apsorpcionoj koloni sa punjenjem za sistem CO2 – voda Naučni rad

Glavni sadržaj članka

Dario Balaban
Branislava Nikolovski
https://orcid.org/0000-0002-0753-3155
Mitar Perušić
https://orcid.org/0000-0001-9335-1405
Goran Tadić
https://orcid.org/0009-0002-5898-2281

Apstrakt

U ovom radu predstavljeni su rezultati istraživanja o prenosu mase i hidrodinamici u apsorpcionoj koloni sa punjenjem. Eksperimentalno je ispitivana laboratorijska apsorpciona kolona sa Rašiigovim prstenovima i dobijeni su rezultati za pad pritiska, tačke plavljenja i efikasnost apsorpcije CO2 u vodi. Prateća oprema uređaja i hemijske analize omogućile su jednostavno dobijanje i praćenje podataka. Svi dobijeni rezultati su korišteni za testiranje različitih matematičkih modela za dati problem, tj. za pad pritiska u suvoj koloni, za određivanje tačke plavljenja i visine prenosne jedinice u gasnoj fazi. Za pad pritiska u suvoj koloni, modeli primarno razvijeni za kolone sa punjenjem najbolje su opisali eksperimentalne podatke, gde je model Bileta (Billet) dao srednju grešku od ~6.5 %, a prate ga modeli Makovjaka (Mackowiak) i Štihlmera (Stichlmair). U proračunu tačke plavljenja testirani su empirijski modeli, od kojih su najbolje rezultate dali modeli Loboa (Lobo), Leva (Leva) i Takahašija (Takahashi). Eksperimenti prenosa mase (apsorpcije) su dali očekivane rezultate, s obzirom da se efikasnost apsorpcije povećavala sa porastom odnosa protoka tečnost/gas, tj. približavanjem tački plavljenja. Model Onde (Onda) je korišten za određivanje parcijalnih koeficijenata prenosa mase u tečnoj i gasnojfazi, na osnovu kojih je određena visina prenosne jedinice u gasnoj fazi i poređena sa eksperimentalnim podacima. Odstupanje izračunatih i eksperimentalnih rezultata za visinu prenosne jedinice je bilo u očekivanom rasponu od 0-20%, sa srednjom greškom od 15.5 %. Može se zaključiti da dostupni modeli za određivanje datih parametara hidrodinamike i prenosa mase u apsorpcionim kolonama sa punjenjem daju prihvatljive rezultate u poređenju sa eksperimentalno određenim vrednostima.

Detalji članka

Broj časopisa

Rubrika

Hemijsko inženjerstvo - Modelovanje procesa

Kako citirati

[1]
D. Balaban, B. . Nikolovski, M. Perušić, and G. Tadić, “Eksperimentalna istraživanja i modelovanje prenosa mase i hidrodinamike u apsorpcionoj koloni sa punjenjem za sistem CO2 – voda: Naučni rad”, Hem Ind, vol. 77, no. 2, pp. 99–109, Jun. 2023, doi: 10.2298/HEMIND230120014B.

Funding data

Reference

Flagiello D, Parisi A, Lancia A, Di Natale F. A review on gas-liquid mass transfer coefficients in packed-bed columns. ChemEngineering. 2021; 5(3): 43. https://doi.org/10.3390/chemengineering5030043

Piché S, Larachi F, Grandjean BPA. Flooding capacity in packed towers: Database, correlations, and analysis. Ind Eng Chem Res. 2001; 40(1): 47-487. https://doi.org/10.1021/ie000486s

Shahsavand A, Derakhshan Fard F, Sotoudeh F. Application of artificial neural networks for simulation of experimental CO2 absorption data in a packed column. J Nat Gas Sci Eng. 2011; 3(3): 518-529. https://doi.org/10.1016/j.jngse.2011.05.001

Marek M. CFD modelling of gas flow through a fixed bed of Raschig rings. J Phys Conf Ser. 2014; 530(1): 012016. https://doi.org/10.1088/1742-6596/530/1/012016

Haroun Y, Raynal L. Use of Computational Fluid Dynamics for Absorption Packed Column Design. Oil Gas Sci Technol. 2016; 71(3): 43. https://doi.org/10.2516/ogst/2015027

Basha OM, Wang R, Gamwo IK, Siefert NS, Morsi BI. Full-Scale CFD Modeling of Multiphase Flow Distribution in a Packed-bed Absorber with Structured Packing Mellapak 250Y. Int J Chem React Eng. 2020; 18(3): 1–17. https://doi.org/10.1515/ijcre-2019-0207

Lu X, Xie P, Ingham DB, Ma L, Pourkashanian M. Modelling of CO2 absorption in a rotating packed bed using an Eulerian porous media approach. Chem Eng Sci. 2019; 199: 302–318. https://doi.org/10.1016/j.ces.2019.01.029

Dixon AG. COMSOL Multiphysics Simulation of 3D Single-phase Transport in a Random Packed Bed of Spheres. Proc COMSOL Conf Bost. 2014; 15261(2013): 15261.

Marek M. Gas flow maldistribution in random packed beds of non-spherical particles – A CFD study. Chem Eng Sci. 2019; 197: 296–305. https://doi.org/10.1016/j.ces.2018.12.032

Pan W, Galvin J, Huang WL, Xu Z, Sun X, Fan Z, Liu K. Device-scale CFD modeling of gas-liquid multiphase flow and amine absorption for CO2 capture. Greenh Gases Sci Technol. 2018; 8(3): 603–620. https://doi.org/10.1002/ghg.1770

Krauß M, Rzehak R. Reactive absorption of CO2 in NaOH: An Euler-Euler simulation study. Chem Eng Sci. 2018; 181: 199-214. https://doi.org/10.1016/j.ces.2018.01.009

Mores P, Scenna N, Mussati S. A rate based model of a packed column for CO2 absorption using aqueous monoethanolamine solution. Int J Greenh Gas Control. 2012; 6: 21–36. https://doi.org/10.1016/j.ijggc.2011.10.012

Tontiwachwuthikul P, Meisen A, Lim CJ. CO2 absorption by NaOH, monoethanolamine and 2-amino-2-methyl-1-propanol solutions in a packed column. Chem Eng Sci. 1992; 47(2): 381–390. https://doi.org/10.1016/0009-2509(92)80028-B

Lin SH, Shyu CT. Performance characteristics and modeling of carbon dioxide absorption by amines in a packed column. Waste Manag. 1999; 19(4): 255–262. https://doi.org/10.1016/S0956-053X(99)00135-X

Ali S, Akhtar J. Hydrodynamics of Packed Bed Column: Study of the Column for the Absorption of CO2 in Water and its Efficiency. Mass Spectrom Purif Tech. 2018; 04(01): 2–6. https://doi.org/10.4172/2469-9861.1000122

Niegodajew P, Marek M. Analysis of orientation distribution in numerically generated random packings of Raschig rings in a cylindrical container. Powder Technol. 2016; 297: 193–201. https://doi.org/10.1016/j.powtec.2016.04.024

Armfield. UOP7 MKII – Gas Absorption Column n.d. https://armfield.co.uk/product/uop7-mkii-gas-absorption-column/

Reddy RK, Joshi JB. CFD modeling of pressure drop and drag coefficient in fixed and expanded beds. Chem Eng Res Des. 2008; 86(5): 444–453. https://doi.org/10.1016/j.cherd.2007.12.007

Billet R, Schultes M. Modelling of Pressure Drop in Packed Columns. Trans Znsr Chem Eng. 1991; 14(6): 167–174. https://doi.org/10.1002/ceat.270140203

Çarpinlioǧlu MÖ, Özahi E. A simplified correlation for fixed bed pressure drop. Powder Technol. 2008; 187(1): 94–101. https://doi.org/10.1016/j.powtec.2008.01.027

Ozahi E, Gundogdu MY, Carpinlioglu MÖ. A modification on Ergun’s correlation for use in cylindrical packed beds with non-spherical particles. Adv Powder Technol. 2008; 19(4): 369–381. https://doi.org/10.1163/156855208X314985

Li L, Ma W. Experimental Study on the Effective Particle Diameter of a Packed Bed with Non-Spherical Particles. Transp Porous Media. 2011; 89(1): 35–48. https://doi.org/10.1007/s11242-011-9757-2

Stichlmair J, Bravo JL, Fair JR. General model for prediction of pressure drop and capacity of countercurrent gas/liquid packed columns. Gas Sep Purif. 1989; 3(1): 19–28. https://doi.org/10.1016/0950-4214(89)80016-7

Onda K, Sada E, Murase Y. Liquid‐side mass transfer coefficients in packed towers. AIChE J. 1959; 5(2): 235–9. https://doi.org/10.1002/aic.690050220

Similar Articles

You may also start an advanced similarity search for this article.

Najčitanije od istog autora