Antimikrobna aktivnost medicinskih tkanina obrađenih srebrom Stručni rad

Glavni sadržaj članka

Katarina Mihajlovski
https://orcid.org/0000-0002-4436-256X
Željka Stajčić
https://orcid.org/0009-0000-9719-3459
Vesna Lazić
https://orcid.org/0000-0001-6440-6577

Apstrakt

Cilj ovog rada je ispitivanje antimikrobne efikasnosti pamučnih materijala kao što su gaza, higijenski ulošci, vata, komprese i zavoji obrađeni komercijalnim koloidnim rastvorom srebra (kompanija Koloid doo). Ispitan je uticaj koncentracije koloidnog rastvora srebra kojim je obrađena tkanina na antimikrobnu aktivnost prema Gram-negativnim bakterijama Esche­richia coli i Pseudomonas aeruginosa, Gram-pozitivnim bakterijama Staphylococcus aureus, Bacillus subtilis i Enterococcus faecalis i gljivici Candida albicans. Redukcija bakterija postig­nuta testiranim materijalima obrađenim rastvorom srebra koncentracije 30 ppm (15 do 20 µg Ag na 1 g materijala) prema Gram-negativnim bakterijama E. coli i P. aeruginosa je skoro maksimalna nakon dva sata kontakta, 95 i 99 %, redom. U slučaju Gram-pozitivnih bakterija S. aureus, B. subtilis i E. faecalis, potrebno je duže vreme za potpunu redukciju broja bakterija, osim za B. subtilis, gde je dovoljno dva sata kontakta za maksimalno smanjenje početnog broja bakterija. Antifungalna aktivnost prema gljivici C. albicans je umerena.

Detalji članka

Broj časopisa

Rubrika

Primena i tehnologija materijala

Kako citirati

[1]
K. Mihajlovski, Željka . Stajčić, and V. Lazić, “Antimikrobna aktivnost medicinskih tkanina obrađenih srebrom: Stručni rad”, Hem Ind, vol. 77, no. 4, pp. 265–273, Dec. 2023, doi: 10.2298/HEMIND230113021M.

Reference

Czajka R. Development of medical textiles. Fiber Text East Eur. 2005; 13: 13-15 http://www.fibtex.lodz.pl/49_06_13.pdf.

Wong YWH, Yuen CWM, Leung MYS, Ku SKA, Lam LI. Selected applications ofnanotechnology in textiles. Autex Res. J. 2006; 6: 1-8 https://www.autexrj.com/cms/zalaczone_pliki/1-06-1.pdf.

Gao Y, Cranston R. Recent advances in antimicrobial treatments of textiles. Text Res J. 2008; 78:60–72 https://doi.org/10.1177/0040517507082.

Gorenšek M, Recelj P. Nanosilver functionalized cotton fabric. Text Res J. 2007; 77: 138-141. https://doi.org/10.1177/00405175070763.

Ilić V, Šaponjić Z, Vodnik V, Potkonjak B, Jovančić P, Nedeljković J, Radetić M. The influence of Silver Content on Antimicrobial Activity and Color of Cotton Fabrics Functionalized with Ag Nanoparticles. Carbohyd Polym. 2009; 78: 564-569 https://doi.org/10.1016/j.carbpol.2009.05.015.

Davidović S, Miljković M, Lazić V, Jović D, Jokić B, Dimitrijević S, Radetić M. Impregnation of cotton fabric with silver nanoparticles synthesized by dextran isolated from bacterial species Leuconostoc mesenteroides T3. Carbohyd Polym. 2015; 131: 331-336 https://doi.org/10.1016/j.carbpol.2015.06.024.

El-Rafie MH, Ahmed HB, Zahran MK. Characterization of nanosilvercoated cotton fabrics and evaluation of its antibacterial efficacy. Carbohyd Polym. 2014; 107: 174-181. https://doi.org/10.1016/j.carbpol.2014.02.024.

Gorjanc M, Kovač F, Gorenšek M. The influence of vat dyeing on the adsorption of synthesized colloidal silver onto cotton fabrics. Text Res J. 2012; 82(1): 62-69 https://doi.org/10.1177/0040517511420754.

Knetsch MLW, Koole LH. New strategies in the development of antimicrobial coatings: The example of increasing usage of silver and silver nanoparticles. Polymers. 2011; 3: 340–366 https://doi.org/10.3390/polym3010340.

Lee HJ, Jeong SH. Bacteriostatic and skin innoxiousness of nano size silver colloids on textile fabrics. Text Res J. 2005; 75:551-556 https://doi.org/10.1177/0040517505053952.

Pohle D, Damm C, Neuhof J, Rosh A, Munstedt H. Antimicrobial prop-erties of orthopaedic textiles after in-situ deposition of silver nanoparticles. Polym Polym Compos. 2007; 15: 357-363 https://doi.org/10.1177/096739110701500502.

Lazić V, Mihajlovski K, Mraković A, Illés E, Stoiljković M, Ahrenkiel SP, Nedeljković J. Antimicrobial activity of silver nanoparticles supported by magnetite. Chemistry Select. 2019; 4: 4018-4024 https://doi.org/10.1002/slct.201900628.

Lazić V, Smičiklas I, Marković J, Lončarević D, Dostanić J, Ahrenkiel SP, Nedeljković JM. Antibacterial ability of supported silver nanoparticles by functionalized hydroxyapatite with 5-aminosalicylic acid. Vacuum. 2018; 148: 62-68 https://doi.org/10.1016/j.vacuum.2017.10.039.

Radetić M, Ilić V,Vodnik V, Dimitrijević S, Jovančić P, Šaponjić Z, Nedeljković J, Antibacterial effect of silver nanoparticles deposited on corona-treated polyester and polyamide fabrics. Polym Advan Technol. 2008; 19: 1816-1821 https://doi.org/10.1002/pat.1205.

Ilić V, Šaponjić Z, Vodnik V, Mihailović D, Jovančić P, Nedeljković J, Radetić M. A study of the antibacterial efficiency and coloration of dyed polyamide and polyester fabrics modified with colloidal Ag nanoparticles. J Serb Chem Soc. 2009; 74: 349-357 https://doi.org/10.2298/JSC0903349I.

Lazić V, Šaponjić Z, Vodnik V, Dimitrijević S, Jovančić P, Nedeljković J, Radetić M. The study of antibacterial activity and stability od dyed cotton fabrics modified with different forms of silver. J Serb Chem Soc. 2012; 77(2): 225-234 https://doi.org/10.2298/JSC110505167L.

Ilić V, Šaponjić Z, Vodnik V, Molina R, Dimitrijević S, Jovančić P, Nedeljković J, Radetić M. Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles. J Mater Sci. 2009; 44: 3983-3990 https://doi.org/10.1007/s10853-009-3547-z.

Duran N, Marcato PD, De Souza GIH, Alves OL, Esposito E. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabric and their effluent treatment. J Biomed Nanotech. 2007; 3: 203-208 https://doi.org/10.1166/jbn.2007.022.

Similar Articles

You may also start an advanced similarity search for this article.