Challenges and doubts of electrochemical energy conversion and storage

Main Article Content

Aleksandar Dekanski


Although electrochemical systems for energy conversion and storage at first glance have excellent properties, both in terms of sustainability, renewable and environment safety, as well as functionality and application in various fields, especially in mobile devices, advance and application of these systems face many challenges and increasingly significant dilemmas.


*The views expressed in this Section are the sole responsibility of the authors and do not necessarily reflect the views of the Editorial team.


Download data is not yet available.

Article Details

How to Cite
Dekanski, A. (2022). Challenges and doubts of electrochemical energy conversion and storage. HEMIJSKA INDUSTRIJA, 76(1), 43–54.
Letter to the Editor*


Guney MS, Tepe Y. Classification and assessment of energy storage systems. Renew Sustain Energy Rev 2017;75:1187–97.

Energyland - New and Renewable Energy, (pristupljeno 8. decembra 2021.)

Energy Sources: Types and Examples, (pristupljeno 22. decembra 2021.)

Share of electricity in total final energy consumption, historical and SDS – Charts – Data & Statistics - IEA, (pristupljeno 8. decem¬bra 2021.)

Mohsen M, Bagher AM, Reza BM, Abadi Vahid MM, Mahdi T. Comparing the generation of electricity from renewable and non-renewable energy sources in Iran and the world: Now and future. World J Eng 2015;12(6):627–38.

Kiehne HA, Battery Technology Handbook. Marcel Dekker, New York, USA 2003, ISBN 978-0824756420

Northeast Center for Chemical Energy Storage - The NorthEast Center for Chemical Energy Storage, Binghamton University (pristupljeno 9. decembra 2021.)

Ibrahim H, Ilinca A, Perron J. Energy storage systems-Characteristics and comparisons. Renew Sustain Energy Rev 2008;12(5):1221–50.

Koohi-Fayegh S, Rosen MA. A review of energy storage types, applications and recent developments. J Energy Storage 2020;27.

Niaz S, Manzoor T, Pandith AH. Hydrogen storage: Materials, methods and perspectives. Renew Sustain Energy Rev 2015;50:457–69.

Kopyscinski J, Schildhauer TJ, Biollaz SMA. Production of synthetic natural gas (SNG) from coal and dry biomass – A technology review from 1950 to 2009. Fuel 2010;89(8):1763–83.

Saxena RC, Adhikari DK, Goyal HB. Biomass-based energy fuel through biochemical routes: A review. Renew Sustain Energy Rev 2009;13(1):167–78.

Synthetic Natural Gas (SNG): Technology, Environmental Implications, and Economics | The Nicholas Institute for Environ-mental Policy Solutions, (pristupljeno 13. decembra 2021.)

Abedin AH. A Critical Review of Thermochemical Energy Storage Systems. Open Renew Energy J 2011;4(1):42–6.

Zakeri B, Syri S. Electrical energy storage systems: A comparative life cycle cost analysis. Renew Sustain Energy Rev 2015;42:569–96.

Mechanical Electricity Storage Technology | Energy Storage Association, (pristupljeno 3. januara 2022.)

Cabeza LF, Martorell I, Miró L, et al. Introduction to thermal energy storage systems. Adv Therm Energy Storage Syst 2021:1–33.

Nithyanandam K, Stekli J, Pitchumani R. High-temperature latent heat storage for concentrating solar thermal (CST) systems. Adv Conc Sol Therm Res Technol 2017:213–46.

HISTORY OF LEAD - Batteries International n.d. (pristupljeno 3. januara 2022.)

Pfleger N, Bauer T, Martin C, Eck M, Wörner A. Thermal energy storage – overview and specific insight into nitrate salts for sensible and latent heat storage. Beilstein J Nanotechnol 6154 2015;6(1):1487–97.

Nitta N, Wu F, Lee JT, Yushin G. Li-ion battery materials: present and future. Mater Today 2015;18(5):252–64.

Декански АБ, Панић ВВ. Електрохемијски суперкондензатори: Принцип рада, компоненте и активни материјали. Hem Ind 2018;72(4):229–51.

Poonam, Sharma K, Arora A, Tripathi SK. Review of supercapacitors: Materials and devices. J Energy Storage 2019;21:801–25.

Rajaputra SS, Pennada N, Yerramilli A, Kummara NM. Graphene based sulfonated polyvinyl alcohol hydrogel nanocomposite for flexible supercapacitors. J Electrochem Sci Eng 2021;11(3):197–207.

Sánchez-Díez E, Ventosa E, Guarnieri M, et al. Redox flow batteries: Status and perspective towards sustainable stationary energy storage. J Power Sources 2021;481:228804.

Sazali N, Salleh WNW, Jamaludin AS, Razali MNM. New Perspectives on Fuel Cell Technology: A Brief Review. Membranes (Basel) 2020;10(5).

Olabi AG, Sayed ET, Wilberforce T, et al. Metal-Air Batteries—A Review. Energies 2021, Vol 14, Page 7373 2021;14(21):7373.

Choudhury P, Bhunia B, Bandyopadhyaya TK. Screening technique on the selection of potent microorganisms for operation in microbial fuel cell for generation of power. J Electrochem Sci Eng 2021;11(2):129–42.

Sivakumar JU, Rao LT, Rewatkar P, et al. Single microfluidic fuel cell with three fuels – formic acid, glucose and microbes: A comparative performance investigation: J Electrochem Sci Eng 2021;11(4):305–16.

Jha V, Surasani VK, Krishnamurthy B. Three-dimensional mathematical model to study effects of geometrical parameters on performance of solid oxide fuel cell: J Electrochem Sci Eng 2021;11(4):291–304.

Okumura T, Taminato S, Miyazaki Y, et al. LISICON-Based Amorphous Oxide for Bulk-Type All-Solid-State Lithium-Ion Battery. ACS Appl Energy Mater 2020;3(4):3220–9.

Singh B, Wang Z, Park S, et al. A chemical map of NaSICON electrode materials for sodium-ion batteries. J Mater Chem A 2021;9(1):281–92.

Luo X, Wang J, Dooner M, Clarke J. Overview of current development in electrical energy storage technologies and the appli-cation potential in power system operation. Appl Energy 2015;137:511–36.

Cao B, Li X. Recent progress on carbon-based anode materials for na-ion batteries. Wuli Huaxue Xuebao/ Acta Phys - Chim Sin 2020;36(5).

Patil SS, Bhat TS, Teli AM, et al. Hybrid Solid State Supercapacitors (HSSC’s) for High Energy & Power Density: An Overview. Eng Sci 2020;12:38–51.

Goodenough JB, Park KS. The Li-ion rechargeable battery: A perspective. J Am Chem Soc 2013;135(4):1167–76.

Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 2018;3.

Malka D, Attias R, Shpigel N, Malchik F, Levi MD, Aurbach D. Horizons for Modern Electrochemistry Related to Energy Storage and Conversion, a Review. Isr J Chem 2021;61(1–2):11–25.

Moškon J, Talian SD, Dominko R, Gaberšček M. Advances in understanding Li battery mechanisms using impedance spectroscopy. J Electrochem Sci Eng 2020;10(2):79–93.

Dobrota AS, Pašti IA. Chemisorption as the essential step in electrochemical energy conversion. J Electrochem Sci Eng 2020;10(2):141–59.

Slavova M, Mihaylova-Dimitrova E, Mladenova E, Abrashev B, Burdin B, Vladikova D. Zeolite based gas-diffusion electrodes for secondary metal air batteries. J Electrochem Sci Eng 2020;10(2):229–34.

Thackeray MM, Wolverton C, Isaacs ED. Electrical energy storage for transportation - Approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 2012;5(7):7854–63.

Samantara AK, Ratha S, editors. Electrochemical Energy Conversion and Storage Systems for Future Sustainability. New York: Apple Academic Press; 2020.

Verma J, Kumar D. Metal-ion batteries for electric vehicles: current state of the technology, issues and future perspectives. Nanoscale Adv 2021;3(12):3384–94.

Hydropower remains the lowest-cost source of electricity globally, (pristupljeno 27. januara 2022.)

Where does wind power make sense? All topics from climate change to conservation, (pristupljeno 27. januara 2022.)

Solar Panel Recycling, US EPA, (pristupljeno 8. decembra 2021.)

How sustainable is wind power? All topics from climate change to conservation, (pristupljeno 12. januara 2022.)

Wave-Energy Devices Might Affect the Natural Environment, Oregon Sea Grant, Oregon State University, (pristupljeno 2. januara 2022.)

Environmental Impacts of Solar Power | Union of Concerned Scientists n.d. (pristupljeno 27. januara 2022.)