Superkapabaterija na bazi polipirola i cinka sa vodenim rastvorom elektrolita

Main Article Content

Marija Janaćković
Milica M Gvozdenović
Branimir N Grgur

Abstract

Elektroda na bazi polipirola (PPY) dobijena je na grafitu elektrohemijskom polimerizacijom pirola iz vodenog rastvora koji je sadržavao 0,1 mol dm–3 pirola i 1,0 mol dm–3 HCl. Polimerizacija je ostvarena u galvanostatskim uslovima, gustinom struje od 2 mA cm–2 u trajanju od 1 h. Aktivna masa polipirola je procenjana na 14 mg. Na osnovu galvanostatskih krivih punjenja i pražnjenja (dopovanja i dedopovanja) elektrode na bazi PPY u vodenom rastvoru koji je sadržavao 2,0 mol dm–3 NH4Cl i 1,1 mol dm–3 ZnCl2, dobijenih različitim strujama, odeđena je efikasnost iskorišćenja kapaciteta ove elektrode. Formirana je ćelija u kojoj je elektroda na bazi PPY korišćena kao katoda u kombinaciji sa anodom od cinka i vodenim rastvorom 2,0 mol dm–3 NH4Cl i 1,1 mol dm–3 ZnCl2. Praćen je napon punje­nja/pražnjenja Zn|PPY ćelije različitim strujama, na osnovu čega su procenjeni relevantni električni parametri Zn|PPY ćelije. Na osnovu proračunatih električnih parametara, specifične kapacitivnosti, specifične snage i specifične energije, ispitivana Zn|PPY ćelija se može klasifikovati u kategoriju "superkapabaterija".

Article Details

How to Cite
[1]
M. Janaćković, M. M. Gvozdenović, and B. N. Grgur, “Superkapabaterija na bazi polipirola i cinka sa vodenim rastvorom elektrolita”, Hem Ind, vol. 71, no. 6, pp. 479–485, Jan. 2018, doi: 10.2298/HEMIND170322010J.
Section
Chemical Engineering - Reactor Engineering

How to Cite

[1]
M. Janaćković, M. M. Gvozdenović, and B. N. Grgur, “Superkapabaterija na bazi polipirola i cinka sa vodenim rastvorom elektrolita”, Hem Ind, vol. 71, no. 6, pp. 479–485, Jan. 2018, doi: 10.2298/HEMIND170322010J.

References

Rüetschi P, Energy storage and the environment: the role of battery technology, J Power Sources, 1993; 42: 1–7.

Beck F, Rüetschi P, Rechargeable batteries with aqueous electrolytes, Electrochim Acta, 2000; 42: 2467–2482.

Jugović B, Gvozdenović M, Stevanović J, Trisović T, Grgur B, Characterization of electrochemically synthesized PANI on graphite electrode for potential use in elec-trochemical power sources, Mat Chem Phys, 2009; 114: 939–942.

Gvozdenović M, Jugović B, Trisović T, Stevanović J, Grgur B, Electrochemical characterization of polyaniline electrode in ammonium citrate containing electrolyte, Mat Chem Phys, 2011; 125: 601–605.

Holze R, Wu YP, Intrinsically conducting polymers in electrochemical energy technology: Trends and prog-ress, Electrochim Acta, 2014; 122: 93–107.

Snook GA, Kao P, Best AS, Conducting-polymer-based supercapacitor devices and electrodes, J Power Sources, 2011; 196: 1–12.

Li S, Zai Guo P, Wang CY, Wallace GG, Liu HK, Flexible cellulose based polypyrrole–multiwalled carbon nano-tube films for bio-compatible zinc batteries activated by simulated body fluids, J Mater Chem A, 2013; 1: 14300–

–14305.

Manjunatha H, Suresh GS, Venkatesha TV, Electrode materials for aqueous rechargeable lithium batteries, J Solid State Electrochem, 2011; 15: 431–445.

Wang G, Qu Q, Wang B, Shi Y, Tian S, Wu Y, An aqueous electrochemical energy storage system based on doping and intercalation: Ppy/LiMn2O4, Chem Phys Chem, 2008; 9: 2299–2301.

Nyström G, Razaq A, Strømmev M, Nyholm L, Mihra-nyan A, Ultrafast all-polymer paper-based batteries, Nano Lett, 2009; 9: 3635–3639.

Grgur BN, Gvozdenović MM, Stevanović J, Jugović BZ, Marinović VM, Polypyrrole as possible electrode mat-erials for the aqueous-based rechargeable zinc bat-teries, Electrochim, Acta, 2008; 53: 4627–4632.

Suematsu S, Oura Y, Tsujimoto H, Kanno H, Naoi K, Conducting polymer films of cross-linked structure and their QCM analysis, Electrochim Acta, 2000; 45: 3813–

–3821.

Alguail AA, Al-Eggiely AH, Gvozdenović MM, Jugović BZ, Grgur BN, Battery type hybrid supercapacitor based on polypyrrole and lead-lead sulfate, J Power Sources, 2016; 313: 240–246.

Carrasco PM, Cortazar M, Ochoteco E, Calahorra E, Pomposo JA, Comparison of surface and bulk doping levels in chemical polypyrroles of low, medium and high conductivity, Surf Interface Anal, 2007; 39: 26–32.

Weidlich C, Mangold KM, Jüttner K, EQCM study of the ion exchange behaviour of polypyrrole with different counterions in different electrolytes, Electrochim Acta, 2005; 50: 1547–1552.

Vernitskaya TV, Efimov ON, Polypyrrole: a conducting polymer; its synthesis, properties, and applications, Russ Chem Rev, 1997; 66: 443–457.

Mazeikiene R, Malinauskas A, Kinetics of the electro-chemical degradation of polypyrrole, Polym Degrad Stab, 2002; 75: 255–258.

Li Y, Qian R, Electrochemical overoxidation of con-ducting polypyrrole nitrate film in aqueous solutions, Electrochim Acta, 2000; 45: 1727–1731.

Shukla AK, Banerjee A, Ravikumar MK, Jalajakshi A, Electrochemical capacitors: Technical challenges and prognosis for future markets, Electrochim Acta, 2012; 84: 165–173.

Cericola D, Kötz R, Hybridization of rechargeable bat-teries and electrochemical capacitors: Principles and limits, Electrochim Acta, 2012; 72: 1–17.

Zhao X, Sánchez BM, Dobson PJ, Grant PS, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices, Nanoscale, 2011; 3: 839–855.

Yu L, Chen GZ, Redox electrode materials for super-capatteries, J Power Sources, 2016; 326: 604–612.

Linpo Yua L, Chen GZ, High energy supercapattery with an ionic liquid solution of LiClO4, Faraday Discuss, 2016; 190: 231–240.

Similar Articles

You may also start an advanced similarity search for this article.