Superkapabaterija na bazi polipirola i cinka sa vodenim rastvorom elektrolita
Main Article Content
Abstract
Elektroda na bazi polipirola (PPY) dobijena je na grafitu elektrohemijskom polimerizacijom pirola iz vodenog rastvora koji je sadržavao 0,1 mol dm–3 pirola i 1,0 mol dm–3 HCl. Polimerizacija je ostvarena u galvanostatskim uslovima, gustinom struje od 2 mA cm–2 u trajanju od 1 h. Aktivna masa polipirola je procenjana na 14 mg. Na osnovu galvanostatskih krivih punjenja i pražnjenja (dopovanja i dedopovanja) elektrode na bazi PPY u vodenom rastvoru koji je sadržavao 2,0 mol dm–3 NH4Cl i 1,1 mol dm–3 ZnCl2, dobijenih različitim strujama, odeđena je efikasnost iskorišćenja kapaciteta ove elektrode. Formirana je ćelija u kojoj je elektroda na bazi PPY korišćena kao katoda u kombinaciji sa anodom od cinka i vodenim rastvorom 2,0 mol dm–3 NH4Cl i 1,1 mol dm–3 ZnCl2. Praćen je napon punjenja/pražnjenja Zn|PPY ćelije različitim strujama, na osnovu čega su procenjeni relevantni električni parametri Zn|PPY ćelije. Na osnovu proračunatih električnih parametara, specifične kapacitivnosti, specifične snage i specifične energije, ispitivana Zn|PPY ćelija se može klasifikovati u kategoriju "superkapabaterija".
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
How to Cite
References
Rüetschi P, Energy storage and the environment: the role of battery technology, J Power Sources, 1993; 42: 1–7.
Beck F, Rüetschi P, Rechargeable batteries with aqueous electrolytes, Electrochim Acta, 2000; 42: 2467–2482.
Jugović B, Gvozdenović M, Stevanović J, Trisović T, Grgur B, Characterization of electrochemically synthesized PANI on graphite electrode for potential use in elec-trochemical power sources, Mat Chem Phys, 2009; 114: 939–942.
Gvozdenović M, Jugović B, Trisović T, Stevanović J, Grgur B, Electrochemical characterization of polyaniline electrode in ammonium citrate containing electrolyte, Mat Chem Phys, 2011; 125: 601–605.
Holze R, Wu YP, Intrinsically conducting polymers in electrochemical energy technology: Trends and prog-ress, Electrochim Acta, 2014; 122: 93–107.
Snook GA, Kao P, Best AS, Conducting-polymer-based supercapacitor devices and electrodes, J Power Sources, 2011; 196: 1–12.
Li S, Zai Guo P, Wang CY, Wallace GG, Liu HK, Flexible cellulose based polypyrrole–multiwalled carbon nano-tube films for bio-compatible zinc batteries activated by simulated body fluids, J Mater Chem A, 2013; 1: 14300–
–14305.
Manjunatha H, Suresh GS, Venkatesha TV, Electrode materials for aqueous rechargeable lithium batteries, J Solid State Electrochem, 2011; 15: 431–445.
Wang G, Qu Q, Wang B, Shi Y, Tian S, Wu Y, An aqueous electrochemical energy storage system based on doping and intercalation: Ppy/LiMn2O4, Chem Phys Chem, 2008; 9: 2299–2301.
Nyström G, Razaq A, Strømmev M, Nyholm L, Mihra-nyan A, Ultrafast all-polymer paper-based batteries, Nano Lett, 2009; 9: 3635–3639.
Grgur BN, Gvozdenović MM, Stevanović J, Jugović BZ, Marinović VM, Polypyrrole as possible electrode mat-erials for the aqueous-based rechargeable zinc bat-teries, Electrochim, Acta, 2008; 53: 4627–4632.
Suematsu S, Oura Y, Tsujimoto H, Kanno H, Naoi K, Conducting polymer films of cross-linked structure and their QCM analysis, Electrochim Acta, 2000; 45: 3813–
–3821.
Alguail AA, Al-Eggiely AH, Gvozdenović MM, Jugović BZ, Grgur BN, Battery type hybrid supercapacitor based on polypyrrole and lead-lead sulfate, J Power Sources, 2016; 313: 240–246.
Carrasco PM, Cortazar M, Ochoteco E, Calahorra E, Pomposo JA, Comparison of surface and bulk doping levels in chemical polypyrroles of low, medium and high conductivity, Surf Interface Anal, 2007; 39: 26–32.
Weidlich C, Mangold KM, Jüttner K, EQCM study of the ion exchange behaviour of polypyrrole with different counterions in different electrolytes, Electrochim Acta, 2005; 50: 1547–1552.
Vernitskaya TV, Efimov ON, Polypyrrole: a conducting polymer; its synthesis, properties, and applications, Russ Chem Rev, 1997; 66: 443–457.
Mazeikiene R, Malinauskas A, Kinetics of the electro-chemical degradation of polypyrrole, Polym Degrad Stab, 2002; 75: 255–258.
Li Y, Qian R, Electrochemical overoxidation of con-ducting polypyrrole nitrate film in aqueous solutions, Electrochim Acta, 2000; 45: 1727–1731.
Shukla AK, Banerjee A, Ravikumar MK, Jalajakshi A, Electrochemical capacitors: Technical challenges and prognosis for future markets, Electrochim Acta, 2012; 84: 165–173.
Cericola D, Kötz R, Hybridization of rechargeable bat-teries and electrochemical capacitors: Principles and limits, Electrochim Acta, 2012; 72: 1–17.
Zhao X, Sánchez BM, Dobson PJ, Grant PS, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices, Nanoscale, 2011; 3: 839–855.
Yu L, Chen GZ, Redox electrode materials for super-capatteries, J Power Sources, 2016; 326: 604–612.
Linpo Yua L, Chen GZ, High energy supercapattery with an ionic liquid solution of LiClO4, Faraday Discuss, 2016; 190: 231–240.