Razvoj i karakterizacija elektrohemijskog senzora na bazi ugljenika modifikovanog nanočesticama TiO2 Naučni rad

Glavni sadržaj članka

Saša Mićin
https://orcid.org/0000-0002-2220-435X
Borislav Malinović
https://orcid.org/0000-0003-3161-5115
Tijana Đuričić
https://orcid.org/0000-0002-1502-7498

Apstrakt

Cilj ove studije je razvoj i karakterizacija elektrohemijskog senzora na bazi ugljenika, modifikovanog nanočesticama TiO2 za potencijalnu primjenu u elektroanalitičkim tehnikama. Vršena su ispitivanja uticaja udjela vezivnog sredstva i modifikatora na morfološke, fizičko-hemijske i elektrohemijske karakteristike elektrodnog materijala radi određivanja optimalnog odnosa ugljenični materijal/vezivo/modifikator. Ugljenične paste su pripremljene od grafitnog praha modifikovanog nanočesticama TiO2 i tečnih ugljovodonika. Skenirajuća elektronska mikroskopija pokazala je da elektrodni materijal postaje kompaktniji sa dodatkom vezivnog materijala i povećanjem njegovog udjela, te da nema značajnih morfoloških razlika s porastom udjela nanočestica TiO2 koje su prilično homogeno raspodjeljene u grafitnom elektrodnom materijalu. Rezultati ispitivanja ukazuju da modifikovanu ugljeničnu pastu sa sadržajem 40 vol.% parafinskog ulja (PU) i 6-8 mas.% nanočestica TiO2 karakteriše najmanja vrijednost specifičnog otpora. Primjenom ciklične voltametrije dobijen je najizraženiji stepen reverzibilnosti u odnosu na standardni reverzibilni redoks sistem ([Fe(CN)]3-/4-) kod elektrodnog materijala sa sadržajem 30–40 vol.% PU i 8-10 mas.% nanočestica TiO2. Karakterizacijom elektrodnog materijala na bazi ugljenika modifikovanih nanočesticama TiO2 utvrđeno je da optimalan sastav sadrži 40 vol.% PU i 6-8 mas.% nanočestica TiO2, što je od važnosti za primjenu u elektroanalitičkim tehnikama.

Downloads

Download data is not yet available.

Detalji članka

Kako citirati
Mićin, S., Malinović, B. ., & Đuričić, T. (2022). Razvoj i karakterizacija elektrohemijskog senzora na bazi ugljenika modifikovanog nanočesticama TiO2: Naučni rad. HEMIJSKA INDUSTRIJA : : ХЕМИЈСКА ИНДУСТРИЈА, 76(3), 147–158. https://doi.org/10.2298/HEMIND220105013M
Broj časopisa
Sekcija
Hemijsko inženjerstvo - Elektrohemijsko inženjerstvo

Reference

Švancara I, Walcarius A, Kalcher K, Vytřas K. Carbon paste electrodes in the new Millennium. Cent Eur J Chem. 2009; 7(4): 598-656 https://doi.org/10.2478/s11532-009-0097-9

Švancara I, Metelka R, Mikysek T, Vytřas K. 30 years with carbon paste electrodes at the University of Pardubice. SciPap. 2017; Series A 23: 5-50. https://hdl.handle.net/10195/75317

Guzsvány V, Papp Z, Švancara I, Vytras K. Insecticides - Advances in Integrated pest management. In: Insecticides – Advances in Integrated Pest Management. Rijeka, Hrvatska, 2012, pp. 541-578 https://doi.org/10.5772/2447

Švancara I, Kalcher K, Walcarius A, Vytřas K. Electroanalysis with Carbon Paste Electrodes. Boca Raton, CRC Press, Taylor&FrancisGroup; 2012 https://doi.org/10.1201/b11478

Luo X, Morrin A, Killard AJ, Smyth MR. Application of Nanoparticles in Electrochemical Sensors and Biosensors. Electroanalysis. 2006; 18(4): 319–326 https://doi.org/10.1002/elan.200503415

Wongkaew N, Simsek M, Griesche Ch, Baeumner AJ. Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Chem Rev. 2019; 119(1): 120–194 https://doi.org/10.1021/acs.chemrev.8b00172

Brainina Kh, Stozhko N, Bukharinova M, Vikulova E. Nanomaterials: Electrochemical Properties and Application in Sensor Phys Sci Rev. 2018; 3(9): 201880050 https://doi.org/10.1515/psr-2018-8050

Katz E, Willner I, Wang J. Electroanalytical and Bioelectroanalytical Systems Based on Metal and Semiconductor Nanoparticles. Electroanalysis. 2004; 16(1-2): 19-44 https://doi.org/10.1002/elan.200302930

Welch CM, Compton RG. Theuse of nanoparticles in electroanalysis: a review. Anal Bioanal Chem. 2006; 384(3): 601–619 https://doi.org/10.1007/s00216-005-0230-3

Zima J, Švancara I, Barek J, Vytras K. Recent advances in electroanalysis of organic and biological compounds at carbon paste electrodes. Crit Rev Anal Chem. 2009; 39: 204-227 https://doi.org/10.1080/10408340903011853

Kalcher K, Švancara I, Buzuk M, Vytras K, Walcarius A. Electrochemical sensors and biosensors based on heterogeneous carbon materials. MonatshChem. 2009; 140: 861-889 https://doi.org/10.1007/s00706-009-0131-9

Švancara I, Konvalina J, Schachl K, Kalcher K, Vytras K. Stripping voltammetric determination of iodide with synergistic accumulation at a carbon paste electrode. Electroanalysis. 1998; 10: 435-441 https://doi.org/10.1002/(SICI)1521-4109(199805)10:6%3C435::AID-ELAN435%3E3.0.CO;2-J

Bai J, Zhou B. Titanium Dioxide Nanomaterials for SensorApplications. Chem Rev. 2014; 114(19): 10131-10176 https://doi.org/10.1021/cr400625j

Xiaobo Chen, Samuel S Mao. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem Rev. 2007; 107: 2891-2959 https://doi.org/10.1021/cr0500535

Ziental D, Czarczynska-Goslinska B, Mlynarczyk DT, Glowacka-Sobotta A, Stanisz B, Goslinski T, Sobotta L. Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials. 2020; 10(2): 387 https://doi.org/10.3390/nano10020387

Mo SD, Ching WY. Electrical and optical properties of three phases of titanium dioxide: Rutile, anatase and brookite. Phys Rev B. 1995; 51(19): 13023-13032 https://doi.org/10.1103/PhysRevB.51.13023

Ansari SA, Khan MM, Ansari MO, Cho MH. Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J Chem. 2016; 40(4): 3000-3009 https://doi.org/10.1039/C5NJ03478G

Babaei A, Moradi M , Sohrabi M, Feshki S, Marandi M. Fabrication of TiO2 Hollow Spheres and its Application in Modification of Carbon Paste Electrode For Simultaneous Determination of Dopamine and Piroxicam in the Presence of Ascorbic acid. J Nanostruct. 2018; 8(1):119-130. https://dx.doi.org/10.22052/JNS.2018.02.002

Ha TJ, Hong MH, Park CS, Park HH. Gas sensing properties of ordered mesoporous TiO2 film enhanced by thermal shock induced cracking. Sens Actuator B Chem. 2013; 181: 874-879 https://doi.org/10.1016/j.snb.2013.02.093

Fadillah G, Ariani F. A novel electrochemical synthesis of TiO2 nanoparticles and its application as bisphenol-B sensor. AIP Conference Proceedings 2021; 2370, 050001 https://doi.org/10.1063/5.0062211

Zarei E, Jamali MR, Bagheri J. Applicationof TiO2 Nanoparticles Modified Carbon Paste Electrode for the Determination of Vitamin B2. J Anal Chem. 2019; 74: 1213–1222 https://doi.org/10.1134/S1061934819120049

Narouei FH, Kirk KA, Andreescu S. Electrochemical Quantification of Lead Adsorption on TiO2 Nanoparticles. Electroanalysis. 2020; 33(1): 188-196 https://doi.org/10.1002/elan.202060152

Sarma M, Valle M. Improved Sensing of Capsaicin with TiO2 Nanoparticle Modified Epoxy Graphite Electrode. Electroanalysis. 2020; 32(2): 230-237 https://doi.org/10.1002/elan.201900400

OliveiraLuciana S, Alba Juan FG, SilvaValdinete L, RibeiroRogério T, FalcãoEduardo HL, Navarro M. The effect of surface functional groups on the performance of Graphite powders used as electrodes. J Electroanalytical Chem. 2018; 818: 106-113 https://doi.org/10.1016/j.jelechem.2018.04.022

Mikysek T, Stočes M, Švancara I, Ludvík J. Relation between the composition and properties of carbon nanotubes paste electrodes (CNTPEs). In: Vytřas K, Kalcher K, Švancara I. Sensing in Electroanalysis, Pardubice, Czech: University of Pardubice; 2010: 69-75 http://hdl.handle.net/10195/38243

Mikysek T, Stočes M, Švancara I, Ludvík J. The ohmic resistance effect for characterisation of carbon nanotube paste electrodes (CNTPEs). RSC Adv. 2012; 2: 3684-3690 https://doi.org/10.1039/C2RA20202F

Rabie Malha SI, Lahcen AA, Arduini F, Ourari A, Amine A. Electrochemical Characterization of Carbon Solid_like Paste Electrode Assembled Using Different Carbon Nanoparticles. Electroanalysis. 2015; 27: 1-9 https://doi.org/10.1002/elan.201500637

Ashrafi AM, Richtera L. Preparation and Characterization of Carbon Paste Electrode Bulk-Modified with Multiwalled Carbon Nanotubes and Its Application in a Sensitive Assay of Antihyperlipidemic Simvastatin in Biological Samples. Molecules. 2019; 24: 2215 https://doi.org/10.3390/molecules24122215

Čović JS, Zarubica AR, Bojić AL, Troter TM, Ranđelović MS. Electrochemical study of novel composite electrodes based on glassy carbon bulk-modified with Pt and MoO2 nanoparticles supported onto multi-walled carbon nanotubes. J Serb Chem Soc. 2020; 85(9): 1185-1196 https://doi.org/10.2298/JSC200221043C

Andi Wang D, Chung DL. Dielectric and electrical conduction behavior of carbon paste electrochemical electrodes, with decoupling of carbon, electrolyte and interface contributions. Carbons. 2014; 72: 135-151 https://doi.org/10.1016/j.carbon.2014.01.066

Khodari M, Mersal GAM, Rabie EM, Assaf HF. Electrochemical Sensor based on Carbon Paste Electrode Modified by TiO2 nano-paricles for the Voltammetric Determination of Resorcinol. Int J Electrochem Sci. 2018; 13: 3460-3474 http://dx.doi.org/10.20964/2018.04.04

Lobón GS, Yepez A, Garcia LF, Morais RL, Vaz BG, Carvalho VV, Rodrigues de Oliveira GA, Luque R, Gil E. Efficient electrochemical remediation of microcystin-LR in tap water using designer TiO2@carbon electrodes. Sci Rep. 2017; 7: 41326 https://dx.doi.org/10.1038%2Fsrep41326

Khursheed A, Akbar M, Richa R, Shaikh MM. Construction of TiO2 nanosheets modified glassy carbon electrode (GCE/TiO2) for the detection of hydrazine. Mater Res Express. 2016; 3: 074005 http://dx.doi.org/10.1088/2053-1591/3/7/074005

Mashhadizadeh MH, Rasouli F. Design of a New Carbon Paste Electrode Modified with TiO2 Nanoparticles to Use in an Electrochemical Study of Codeine and Simultaneous Determination of Codeine and Acetaminophen in Human Plasma Serum Samples. Electroanalysis. 2014; 26: 2033–2042 https://doi.org/10.1002/elan.201400141

Mashhadizadeh MH, Afshar E. Electrochemical investigation of clozapine at TiO2 nanoparticles modified carbon paste electrode and simultaneous adsorptive voltammetric determination of two antipsychotic drugs. Electrochimica Acta. 2013; 87: 816-823 https://doi.org/10.1016/j.electacta.2012.09.004

Švancara I, Schachl. Testing of unmodified carbon paste electrodes. Chem Listy. 1999; 93: 490-499 http://www.chemicke-listy.cz/docs/full/1999_08_490-499.pdf

Mikysek T, Švancara I, Kalcher K, Bartoš M, Vytras K, Ludvík J. New approaches to the characterization of carbon paste electrodes using the ohmic resistance effect and qualitative carbon paste indexes. Anal Chem. 2009; 81(15): 6327-6333 http://dx.doi.org/10.1021/ac9004937

Jiang X, Manawan M, Feng T, Qian R, Zhao T, Zhou G, Kong F, Wang Q, Dai S, Pan JH. Anatase and rutil in evonik aeroxide P25: Heterojunctioned or individual nanoparticles. Catalysis Today. 2017; 300: 12-17 http://dx.doi.org/10.1016/j.cattod.2017.06.010

d Kiran Kumar RS, Mamatha GP, Muralidhara HB, Kumar KY, Prashanth MK, Electrochemical Studies of Dopamine Using Titanium Dioxide Nanoparticle Modified Carbon Paste Electrode, Anal Bioanal Electrochem. 2015; 7(2): 175-185 http://abechem.ir/No.%202-2015/2015,7(2)175-185.pdf

Piljac I. Senzori fizikalnih veličina i elektroanalitičke metode. Zagreb, Hrvatska: Mediaprint-Tiskara Hrastić d.o.o.; 2010 ISBN 978-953-95404-1-6

Hassaninejad-Darzi SK, Shajie F. A Sensitive Voltammetric Determination of Anti-Parkinson Drug Pramipexole Using Titanium Dioxide Nanoparticles Modified Carbon Paste Electrode. J Braz Chem Soc. 2016; 28(4): 529-539 http://dx.doi.org/10.5935/0103-5053.20160192

Tashkhourian J, Nami Ana SF, Hashemnia S, Hormozi-Nezhad MR. Construction of modified carbon paste electrode based on TiO2 nanoparticles for the determination of gallic acid. J Solid State Electrochem. 2013; 17: 157–165 https://doi.org/10.1007/s10008-012-1860-y

Garcia LF, Cunha CEPd, Moreno EKG, Thomaz DV, Sanz Lobón G, Luque R, Somerset V, De Souza Gil E. Nanostructured TiO2 Carbon Paste Based Sensor for Determination of Methyldopa. Pharmaceuticals. 2018; 11(4):99. http://dx.doi.org/10.3390/ph11040099

Radoman T, Džunuzović J, Jeremić K, Marinković A, Spasojević P, Popović I, Džunuzović E. Uticaj veličine nanočestica TIO2 i njihove površinske modifikacije na reološka svojstva alkidne smole. Hem Ind. 2013; 67(6): 923-932 https://doi.org/10.2298/HEMIND131106081R

Manjunatha KG, Kumara Swamy BE, Madhuchandra HD, Vishnumurthy KA. Synthesis, characterization and electrochemical studies of titanium oxide nanoparticle modified carbon paste electrode for the determination of paracetamol in presence of adrenaline. Chem Data Collec. 2021; 31: 100604 https://doi.org/10.1016/j.cdc.2020.100604

Tashkhourian J, Nami Ana SF, Hashemnia S, Hormozi-Nezhad MR. Construction of modified carbon paste electrode based on TiO2 nanoparticles for the determination of gallic acid. J Solid State Electrochem. 2013; 17: 157–165 https://doi.org/10.1007/s10008-012-1860-y

Akhond M, Absalan G, Tafakori A, Ershadifar H. Simultaneous Determination of Thiocyanateand Oxalate in Urine using a Carbon Ionic Liquid Electrode Modified with TiO2-Fe Nanoparticles. Anal Bioanal Chem. 2016; 3(1): 73-86 https://dx.doi.org/10.22036/abcr.2016.14554

Ardakani MM, Beitollahi H, Taleat Z, Niasari MS. Fabrication and characterization of molybdenum(VI) complex–TiO2 nanoparticles modified electrode for the electrocatalytic determination of L-cysteine. J Serb Chem Soc. 2011; 76(4): 575–589 http://dx.doi.org/10.2298/JSC100504042M

Merck KGaA, Darmstadt, Germany https://www.merckmillipore.com/INTL/en/product/Graphite,MDA_CHEM-104206 pristupljeno 11. 05. 2021.

Merck KGaA, Darmstadt, Germany https://www.merckmillipore.com/INTL/en/product/Paraffin,MDA_CHEM-107160 pristupljeno 11. 05. 2021.

Merck KGaA, Darmstadt, Germany https://www.merckmillipore.com/INTL/en/product/Tritolyl-phosphate,MDA_CHEM-814811 Pristupljeno 11. 05. 2021.

Xiongzhen Jiang, Maykel Manawan, Ting Feng, Ruifeng Qian, Ting Zhao, Guanda Zhou, Fantai Kong , Qing Wang, Songyuan Dai, Jia HongPan. Anatase and rutil in evonik aeroxide P25:Heterojunctioned or individual nanoparticles. Catalysis Today. 2017; 300: 12-17 http://dx.doi.org/10.1016/j.cattod.2017.06.010