Investigation of electrohydrodynamic calculations Original scientific paper

Main Article Content

Stefan A. Bošković
Aleksandar Karač
Slobodan B. Vrhovac
Aleksandar Belić
Branko Bugarski


A perfect dielectric model was incorporated into the OpenFOAM® software and used for investigation and, possibly, improvements of electrohydrodynamic calculations. Two different sets of numerical simulations were analyzed, in which two different fluids were present. The first set was one-dimensional, while in the second, a drop of one fluid was surrounded by the other fluid. It is shown that oscillations and possible artificial generation of a curl of the electric field strength can be observed at applying certain expressions or calculation strategies, which can be thus abandoned. Usage of dynamic meshes, at least those present in the used software, and of limiters for the gradient of the electric field strength can lead to large numerical errors. It is also shown that usage of certain cell face values could improve the results. An electric Courant number was derived by dimensional analysis, and it could be suggested for future calculations. Conclusions made in this paper are expected to be transferable to other more complicated models.


Download data is not yet available.

Article Details

How to Cite
Bošković, S. A., Karač, A., Vrhovac, S. B., Belić, A., & Bugarski, B. (2022). Investigation of electrohydrodynamic calculations: Original scientific paper. HEMIJSKA INDUSTRIJA, 76(2), 65–74.
Chemical Engineering - Transport Phenomena


López-Herrera JM, Popinet S, Herrada MA. A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid. J Comput Phys. 2011; 230: 1939-1955

Castellanos A, ed. Electrohydrodynamics. Vienna, Austria: Springer-Verlag Wien; 1998

Bošković S, Bugarski B. Review of electrospray observations and theory. J Eng Process Manag. 2018; 10: 41-53

Singh R, Bahga SS, Gupta A. Electrohydrodynamics in leaky dielectric fluids using lattice Boltzmann method. Eur J Mech B Fluids. 2019; 74: 167-179

Shin W-T, Yiacoumi S, Tsouris C. Electric-field effects on interfaces: electrospray and electrocoalescence. Curr Opin Colloid Interface Sci. 2004; 9: 249-255

Pongrác B, Kim H-H, Negishi N, Machala Z. Influence of water conductivity on particular electrospray modes with dc corona discharge – optical visualization approach. Eur Phys J D. 2014; 68: 224

Fernandez de la Mora J, Van Berkel GJ, Enke CG, Cole RB, Martinez-Sanchez M, Fenn JB. Electrochemical processes in electrospray ionization mass spectrometry. J Mass Spectrom. 2000; 35: 939-952<939::aid-jms36>;2-v

Notz PK, Basaran OA. Dynamics of Drop Formation in an Electric Field. J Colloid Interface Sci. 1999; 213: 218-237

Xie J, Wang C-H. Encapsulation of Proteins in Biodegradable Polymeric Microparticles Using Electrospray in the Taylor Cone-Jet Mode. Biotechnol Bioeng. 2007; 97: 1278-1290

Thirumalaisamy R, Natarajan G, Dalal A. Towards an improved conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid. J Comput Phys. 2018; 367: 391-398

Bugarski B, Smith J, Wu J, Goosen MFA. Methods for animal cell immobilization using electrostatic droplet generation. Biotechnol Techn. 1993; 7: 677-682

Bugarski B, Li Q, Goosen MFA, Poncelet D, Neufeld RJ, Vunjak G. Electrostatic Droplet Generation: Mechanism of Polymer Droplet Formation. AIChE J. 1994: 40: 1026-1031

Poncelet D, Bugarski B, Amsden BG, Zhu J, Neufeld R, Goosen MFA. A Parallel plate electrostatic droplet generator: parameters affecting microbead size. Appl Microbiol Biotechnol. 1994; 42: 251-255

Poncelet D, Neufeld RJ, Goosen MFA, Burgarski B, Babak V. Formation of microgel beads by electric dispersion of polymer solutions. AIChE J. 1999; 45: 2018-2023

Manojlovic V, Djonlagic J, Obradovic B, Nedovic V, Bugarski B. Immobilization of cells by electrostatic droplet generation: a model system for potential application in medicine. Int J Nanomed. 2006; 1: 163-171

Poncelet D, Babak VG, Neufeld RJ, Goosen MFA, Burgarski B. Theory of electrostatic dispersion of polymer solutions in the production of microgel beads containing biocatalyst. Adv Colloid Interface Sci. 1999; 79: 213-228

Supeene G, Koch CR, Bhattacharjee S. Deformation of a droplet in an electric field: Nonlinear transient response in perfect and leaky dielectric media. J Colloid Interface Sci. 2008; 318: 463-476

Munoz CN. Computational modelling of electrohydrodynamic atomization. MSc. Thesis, The University of Manchester, Manchester, UK; 2014.

Reddy MN, Esmaeeli A. The EHD-driven fluid flow and deformation of a liquid jet by a transverse electric field. Int J Multiphase Flow. 2009; 35: 1051-1065

Taylor GI. Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field. Proc R Soc London, Ser A. 1966; 291: 159-166

Moukalled F, Mangani L, Darwish M. The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab®. Switzerland: Springer International Publishing Switzerland; 2016

Andersson B, Andersson R, Håkansson L, Mortensen M, Sudiyo R, Van Wachem B, Hellstrom L. Computational Fluid Dynamics for Engineers. Cambridge, UK: Cambridge University Press; 2012. ISBN: 978-1-107-01895-2

Li X-g, Fritsching U. Spray Transport Fundamentals. In: Henein H, Uhlenwinkel V, Fritsching U, eds. Metal Sprays and Spray Deposition. Cham, Switzerland: Springer International Publishing AG; 2017:89-176

Hemida H. OpenFOAM tutorial: Free surface tutorial using interFoam and rasInterFoam. 2008.

Lima NC. Numerical Studies in Electrohydrodynamics. Ph.D. Thesis, School of Mechanical Engineering of the University of Campinas; 2017.

Chen C-H. Electrohydrodynamic Stability. In: Ramos A, ed. Electrokinetics and Electrohydrodynamics in Microsystems. New York, New York, USA: SpringerWienNewYork; 2011:177-220

Lastow O, Balachandran W. Numerical simulation of electrohydrodynamic (EHD) atomization. J Electrostat. 2006; 64: 850-859

Greenshields CJ. OpenFOAM The Open Source CFD Toolbox: Programmer’s Guide Version 3.0.1. OpenFOAM Foundation Ltd.; 2015.

Davidson PA. Turbulence: An Introduction for Scientists and Engineers. New York, USA: Oxford University Press; 2004. ISBN: 0198529481

Aguerre HJ, Pairetti CI, Venier CM, Márquez Damián S, Nigro NM. An oscillation-free flow solver based on flux reconstruction. J Comput Phys. 2018; 365: 135-148

Sander S, Gawor S, Fritsching U. Separating polydisperse particles using electrostatic precipitators with wire and spiked-wire discharge electrode design. Particuology. 2018; 38: 10-17

Weber N, Galindo V, Stefani F, Weier T, Wondrak T. Numerical simulation of the Tayler instability in liquid metals. New J Phys. 2013; 15: 043034

Most read articles by the same author(s)