Investigation of electrohydrodynamic calculations Original scientific paper

Main Article Content

Stefan A. Bošković
https://orcid.org/0000-0002-6994-390X
Aleksandar Karač
https://orcid.org/0000-0002-9199-1350
Slobodan B. Vrhovac
https://orcid.org/0000-0002-1050-841X
Aleksandar Belić
Branko Bugarski
https://orcid.org/0000-0002-1846-8555

Abstract

A perfect dielectric model was incorporated into the OpenFOAM® software and used for investigation and, possibly, improvements of electrohydrodynamic calculations. Two different sets of numerical simulations were analyzed, in which two different fluids were present. The first set was one-dimensional, while in the second, a drop of one fluid was surrounded by the other fluid. It is shown that oscillations and possible artificial generation of a curl of the electric field strength can be observed at applying certain expressions or calculation strategies, which can be thus abandoned. Usage of dynamic meshes, at least those present in the used software, and of limiters for the gradient of the electric field strength can lead to large numerical errors. It is also shown that usage of certain cell face values could improve the results. An electric Courant number was derived by dimensional analysis, and it could be suggested for future calculations. Conclusions made in this paper are expected to be transferable to other more complicated models.

Article Details

How to Cite
[1]
S. A. Bošković, A. Karač, S. B. Vrhovac, A. Belić, and B. Bugarski, “Investigation of electrohydrodynamic calculations: Original scientific paper”, Hem Ind, vol. 76, no. 2, pp. 65–74, May 2022, doi: 10.2298/HEMIND211110010B.
Section
Chemical Engineering - Transport Phenomena

How to Cite

[1]
S. A. Bošković, A. Karač, S. B. Vrhovac, A. Belić, and B. Bugarski, “Investigation of electrohydrodynamic calculations: Original scientific paper”, Hem Ind, vol. 76, no. 2, pp. 65–74, May 2022, doi: 10.2298/HEMIND211110010B.

References

López-Herrera JM, Popinet S, Herrada MA. A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid. J Comput Phys. 2011; 230: 1939-1955 https://dx.doi.org/10.1016/j.jcp.2010.11.042

Castellanos A, ed. Electrohydrodynamics. Vienna, Austria: Springer-Verlag Wien; 1998 https://dx.doi.org/10.1007/978-3-7091-2522-9

Bošković S, Bugarski B. Review of electrospray observations and theory. J Eng Process Manag. 2018; 10: 41-53 https://dx.doi.org/10.7251/jepm181002041b

Singh R, Bahga SS, Gupta A. Electrohydrodynamics in leaky dielectric fluids using lattice Boltzmann method. Eur J Mech B Fluids. 2019; 74: 167-179 https://dx.doi.org/10.1016/j.euromechflu.2018.11.011

Shin W-T, Yiacoumi S, Tsouris C. Electric-field effects on interfaces: electrospray and electrocoalescence. Curr Opin Colloid Interface Sci. 2004; 9: 249-255 https://dx.doi.org/10.1016/j.cocis.2004.06.006

Pongrác B, Kim H-H, Negishi N, Machala Z. Influence of water conductivity on particular electrospray modes with dc corona discharge – optical visualization approach. Eur Phys J D. 2014; 68: 224 https://dx.doi.org/10.1140/epjd/e2014-50052-4

Fernandez de la Mora J, Van Berkel GJ, Enke CG, Cole RB, Martinez-Sanchez M, Fenn JB. Electrochemical processes in electrospray ionization mass spectrometry. J Mass Spectrom. 2000; 35: 939-952 https://dx.doi.org/10.1002/1096-9888(200008)35:8<939::aid-jms36>3.0.co;2-v

Notz PK, Basaran OA. Dynamics of Drop Formation in an Electric Field. J Colloid Interface Sci. 1999; 213: 218-237 https://dx.doi.org/10.1006/jcis.1999.6136

Xie J, Wang C-H. Encapsulation of Proteins in Biodegradable Polymeric Microparticles Using Electrospray in the Taylor Cone-Jet Mode. Biotechnol Bioeng. 2007; 97: 1278-1290 https://dx.doi.org/10.1002/bit.21334

Thirumalaisamy R, Natarajan G, Dalal A. Towards an improved conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid. J Comput Phys. 2018; 367: 391-398 https://dx.doi.org/10.1016/j.jcp.2018.04.024

Bugarski B, Smith J, Wu J, Goosen MFA. Methods for animal cell immobilization using electrostatic droplet generation. Biotechnol Techn. 1993; 7: 677-682 https://dx.doi.org/10.1007/BF00151869

Bugarski B, Li Q, Goosen MFA, Poncelet D, Neufeld RJ, Vunjak G. Electrostatic Droplet Generation: Mechanism of Polymer Droplet Formation. AIChE J. 1994: 40: 1026-1031 https://dx.doi.org/10.1002/aic.690400613

Poncelet D, Bugarski B, Amsden BG, Zhu J, Neufeld R, Goosen MFA. A Parallel plate electrostatic droplet generator: parameters affecting microbead size. Appl Microbiol Biotechnol. 1994; 42: 251-255 https://dx.doi.org/10.1007/BF00902725

Poncelet D, Neufeld RJ, Goosen MFA, Burgarski B, Babak V. Formation of microgel beads by electric dispersion of polymer solutions. AIChE J. 1999; 45: 2018-2023 https://dx.doi.org/10.1002/aic.690450918

Manojlovic V, Djonlagic J, Obradovic B, Nedovic V, Bugarski B. Immobilization of cells by electrostatic droplet generation: a model system for potential application in medicine. Int J Nanomed. 2006; 1: 163-171 https://dx.doi.org/10.2147/nano.2006.1.2.163

Poncelet D, Babak VG, Neufeld RJ, Goosen MFA, Burgarski B. Theory of electrostatic dispersion of polymer solutions in the production of microgel beads containing biocatalyst. Adv Colloid Interface Sci. 1999; 79: 213-228 https://dx.doi.org/10.1016/S0001-8686(97)00037-7

Supeene G, Koch CR, Bhattacharjee S. Deformation of a droplet in an electric field: Nonlinear transient response in perfect and leaky dielectric media. J Colloid Interface Sci. 2008; 318: 463-476 https://dx.doi.org/10.1016/j.jcis.2007.10.022

Munoz CN. Computational modelling of electrohydrodynamic atomization. MSc. Thesis, The University of Manchester, Manchester, UK; 2014.

Reddy MN, Esmaeeli A. The EHD-driven fluid flow and deformation of a liquid jet by a transverse electric field. Int J Multiphase Flow. 2009; 35: 1051-1065 https://dx.doi.org/10.1016/j.ijmultiphaseflow.2009.06.008

Taylor GI. Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field. Proc R Soc London, Ser A. 1966; 291: 159-166 https://dx.doi.org/10.1098/rspa.1966.0086

Moukalled F, Mangani L, Darwish M. The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab®. Switzerland: Springer International Publishing Switzerland; 2016 https://dx.doi.org/10.1007/978-3-319-16874-6

Andersson B, Andersson R, Håkansson L, Mortensen M, Sudiyo R, Van Wachem B, Hellstrom L. Computational Fluid Dynamics for Engineers. Cambridge, UK: Cambridge University Press; 2012. ISBN: 978-1-107-01895-2

Li X-g, Fritsching U. Spray Transport Fundamentals. In: Henein H, Uhlenwinkel V, Fritsching U, eds. Metal Sprays and Spray Deposition. Cham, Switzerland: Springer International Publishing AG; 2017:89-176 https://dx.doi.org/10.1007/978-3-319-52689-8

Hemida H. OpenFOAM tutorial: Free surface tutorial using interFoam and rasInterFoam. 2008.

Lima NC. Numerical Studies in Electrohydrodynamics. Ph.D. Thesis, School of Mechanical Engineering of the University of Campinas; 2017.

Chen C-H. Electrohydrodynamic Stability. In: Ramos A, ed. Electrokinetics and Electrohydrodynamics in Microsystems. New York, New York, USA: SpringerWienNewYork; 2011:177-220 https://dx.doi.org/10.1007/978-3-7091-0900-7

Lastow O, Balachandran W. Numerical simulation of electrohydrodynamic (EHD) atomization. J Electrostat. 2006; 64: 850-859 https://dx.doi.org/10.1016/j.elstat.2006.02.006

Greenshields CJ. OpenFOAM The Open Source CFD Toolbox: Programmer’s Guide Version 3.0.1. OpenFOAM Foundation Ltd.; 2015.

Davidson PA. Turbulence: An Introduction for Scientists and Engineers. New York, USA: Oxford University Press; 2004. ISBN: 0198529481

Aguerre HJ, Pairetti CI, Venier CM, Márquez Damián S, Nigro NM. An oscillation-free flow solver based on flux reconstruction. J Comput Phys. 2018; 365: 135-148 https://dx.doi.org/10.1016/j.jcp.2018.03.033

Sander S, Gawor S, Fritsching U. Separating polydisperse particles using electrostatic precipitators with wire and spiked-wire discharge electrode design. Particuology. 2018; 38: 10-17 https://dx.doi.org/10.1016/j.partic.2017.05.014

Weber N, Galindo V, Stefani F, Weier T, Wondrak T. Numerical simulation of the Tayler instability in liquid metals. New J Phys. 2013; 15: 043034 https://dx.doi.org/10.1088/1367-2630/15/4/043034

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)