Extraction of ammonium nickel sulfate hexahydrate by hydrometallurgical process from the hyperaccumulating plant Odontarrhena muralis – case study from Serbia Original scientific paper

Main Article Content

Branislav Marković
https://orcid.org/0000-0001-9477-8267
Dragana Ranđelović
https://orcid.org/0000-0003-4976-7766
Gvozden Jovanović
https://orcid.org/0000-0002-9754-2230
Gordana Tomović
https://orcid.org/0000-0001-7628-4407
Ksenija Jakovljević
https://orcid.org/0000-0002-1457-6807
Tomica Mišljenović
https://orcid.org/0000-0001-7583-0891
Miroslav Sokić
https://orcid.org/0000-0002-4468-9503

Abstract

Phytomining is a new promising technique that is based on using hyperaccumulating plants which biomass is utilized as a bio-ore for metal extraction. The Ni-hyperaccumulating species Odontarrhena muralis is widely distributed on ultramafic soils in Serbia, and could be a promising candidate for Ni agromining. In the present study, efficiency of a hydrometallurgical process for Ni recovery using biomass of O. muralis wild population through the synthesis of Ni salts from plant ash in the form of ammonium nickel sulfate hexahydrate, Ni(NH4)2(SO4)2 6H2O – (ANSH) was assessed. The average Ni content in the plant from ultramafic sites in West Serbia was up to 3.300 g kg-1. The mass yield of ANSH crystals from the crude ash was ~12 % with the average purity of 73 % were obtained. By optimizing the purification process before precipitation of ANSH crystals, it is possible to obtain salt crystals of higher purity, which increases the economic profitability of this process. The results of this preliminary study on wild population of O. muralis show the increased potential for implementation of phytomining practices as an alternative way of Ni extraction on ultramafic sites in Serbia.

Article Details

How to Cite
[1]
B. Marković, “Extraction of ammonium nickel sulfate hexahydrate by hydrometallurgical process from the hyperaccumulating plant Odontarrhena muralis – case study from Serbia: Original scientific paper”, Hem Ind, vol. 75, no. 5, pp. 285–296, Nov. 2021, doi: 10.2298/HEMIND210701027M.
Section
Engineering of Materials - Metal materials

How to Cite

[1]
B. Marković, “Extraction of ammonium nickel sulfate hexahydrate by hydrometallurgical process from the hyperaccumulating plant Odontarrhena muralis – case study from Serbia: Original scientific paper”, Hem Ind, vol. 75, no. 5, pp. 285–296, Nov. 2021, doi: 10.2298/HEMIND210701027M.

References

Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero R V, Sparks DL. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual. 2007;36(5):1429-1443 https://doi.org/10.2134/jeq2006.0514

Chaney RL, Baker AJM, Morel JL. The long road to developing agromining/phytomining. In: van der Ent A, Baker AJM, Echevarria G, Simonnot M-O, Morel JL, eds. Agromining: farming for metals. Extracting unconventional resources using plants. 2nd ed. Cham, Switzerland: Springer Nature; 2021:1-22 https://doi.org/10.1007/978-3-030-58904-2

van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H. Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil. 2013;362(1):319-334 https://doi.org/10.1007/s11104-012-1287-3

Reeves RD, Baker AJ, Jaffré T, Erskine PD, Echevarria G, van der Ent A. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 2018;218(2):407-411 https://doi.org/10.1111/nph.14907

Stevanović V, Tan K, Iatrou G. Distribution of the endemic Balkan flora on serpentine I.–obligate serpentine endemics. Plant Syst Evol. 2003;242(1):149-170 https://doi.org/10.1007/s00606-003-0044-8

Tumi AF, Mihailović N, Gajić BA, Niketić M, Tomović G. Comparative study of hyperaccumulation of nickel by Alyssum murale sl populations from the ultramafics of Serbia. Polish J Environ Stud. 2012;21(6):1855-1866

Li Y-M, Chaney R, Brewer E, Roseberg R, Angle JS, Baker A, Reeves R, Nelkin J. Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil. 2003;249(1):107-115 https://doi.org/10.1023/A:1022527330401

Tennakone K, Senevirathna MKI, Kehelpannala KVW. Extraction of pure metallic nickel from ores and plants at Ussangoda, Sri Lanka. J Natl Sci Found Sri Lanka. 2007;35(4):245-250 https://doi.org/10.4038/jnsfsr.v35i4.1313

Barbaroux R, Mercier G, Blais J-F, Morel J-L, Simonnot M-O. A new method for obtaining nickel metal from the hyperaccumulator plant Alyssum murale. Sep Purif Technol. 2011;83:57-65 https://doi.org/10.1016/j.seppur.2011.09.009

Losfeld G, Escande V, Jaffré T, LHuillier L, Grison C. The chemical exploitation of nickel phytoextraction: an environmental, ecologic and economic opportunity for New Caledonia. Chemosphere. 2012;89(7):907-910 https://doi.org/10.1016/j.chemosphere.2012.05.004

Grison C, Escande V, Petit E, Garoux L, Boulanger C, Grison C. Psychotria douarrei and Geissois pruinosa, novel resources for the plant-based catalytic chemistry. RSC Adv. 2013;3(44):22340-22345 https://doi.org/10.1039/C3RA43995J

Barbaroux R. Développement dun procédé hydrométallurgique de récupération du nickel à partir de la plante hyperaccumulatrice Alyssum murale. Thesis. Quebec, Canada: University of Quebec, Institut national de la recherche scientifiqu; 2010 (in French) http://espace.inrs.ca/id/eprint/1765/

Zhang X. Hydrometallurgical process for the valorization of nickel contained in hyperaccumulating plants. Thesis. Lorraine, France: Université de Lorraine; 2014 https://hal.univ-lorraine.fr/tel-01751083

Vaughan J, Riggio J, Chen J, Peng H, Harris HH, van der Ent A. Characterisation and hydrometallurgical processing of nickel from tropical agromined bio-ore. Hydrometallurgy. 2017;169:346-355 https://doi.org/10.1016/j.hydromet.2017.01.012

Guilpain M, Laubie B, Zhang X, Morel JL, Simonnot M-O. Speciation of nickel extracted from hyperaccumulator plants by water leaching. Hydrometallurgy. 2018;180:192-200 https://doi.org/10.1016/j.hydromet.2018.07.024

Zhang X, Laubie B, Houzelot V, Plasari E, Echevarria G, Simonnot M-O. Increasing purity of ammonium nickel sulfate hexahydrate and production sustainability in a nickel phytomining process. Chem Eng Res Des. 2016;106:26-32 https://doi.org/10.1016/j.cherd.2015.12.009

Houzelot V, Laubie B, Pontvianne S, Simonnot M-O. Effect of up-scaling on the quality of ashes obtained from hyperaccumulator biomass to recover Ni by agromining. Chem Eng Res Des. 2017;120:26-33 https://doi.org/10.1016/j.cherd.2017.02.002

Kidd PS, Bani A, Benizri E, Gonnelli C, Hazotte C, Kisser J, Konstantinou M, Kuppens T, Kyrkas D, Laubie B. Developing sustainable agromining systems in agricultural ultramafic soils for nickel recovery. Front Environ Sci. 2018;6:44 https://doi.org/10.3389/fenvs.2018.00044

Simonnot M-O, Vaughan J, Laubie B. Processing of bio-ore to products. In: van der Ent A, Echevarria G, Baker A, Morel J, eds. Agromining: Farming for Metals. Cham, Switzerland: Springer; 2018: 39-51 https://doi.org/10.1007/978-3-319-61899-9_3

Bian Z, Miao X, Lei S, Chen S, Wang W, Struthers S. The challenges of reusing mining and mineral-processing wastes. Science. 2012; 337(6095):702-703 https://doi.org/10.1126/science.1224757

van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel JL, Echevarria G, Fogliani B, Rongliang Q, Mulligan DR. Agromining: farming for metals in the future? Environ Sci Technol. 2015;49:4773–4780 https://doi.org/10.1021/es506031u

Sheoran V, Sheoran AS, Poonia P. Phytomining: A review. Miner Eng. 2009;22(12):1007-1019 https://doi.org/10.1016/j.mineng. 2009.04.001

Li C, Ji X, Luo X. Visualizing hotspots and future trends in phytomining research through scientometrics. Sustainability. 2020;12(11):4593 https://doi.org/10.3390/su12114593

Bani A, Echevarria G, Sulçe S, Morel JL, Mullai A. In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant Soil. 2007;293(1):79-89 https://doi.org/10.1007/s11104-007-9245-1

Cerdeira-Pérez A, Monterroso C, Rodríguez-Garrido B, Machinet G, Echevarria G, Prieto-Fernández Á, Kidd PS. Implementing nickel phytomining in a serpentine quarry in NW Spain. J Geochemical Explor. 2019;197:1-13 https://doi.org/10.1016/j.gexplo. 2018.11.001

Rosenkranz T, Hipfinger C, Ridard C, Puschenreiter M. A nickel phytomining field trial using Odontarrhena chalcidica and Noccaea goesingensis on an Austrian serpentine soil. J Environ Manage. 2019;242:522-528 https://doi.org/10.1016/j.jenvman. 2019.04.073

Bani A, Echevarria G, Sulçe S, Morel JL. Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediation. 2015;17(2):117-127 https://doi.org/10.1080/15226514.2013.862204

Nkrumah PN, Chaney RL, Morel JL. Agronomy of metal crops used in agromining. In: van der Ent A, Echevarria G, Baker AJM, Echevarria G, Simonnot M-O, Morel JL, eds. Agromining: farming for metals. Extracting unconventional resources using plants. 2nd ed. Cham, Switzerland: Springer Nature; 2021:23-46 https://doi.org/10.1007/978-3-030-58904-2_2

Hipfinger C, Rosenkranz T, Thüringer J, Puschenreiter M. Fertilization regimes affecting nickel phytomining efficiency on a serpentine soil in the temperate climate zone. Int J Phytoremediation. 2020:1-8 https://doi.org/10.1080/15226514.2020. 1820446

Pędziwiatr A, Kierczak J, Waroszewski J, Ratié G, Quantin C, Ponzevera E. Rock-type control of Ni, Cr, and Co phytoavailability in ultramafic soils. Plant Soil. 2018;423(1):339-362 https://doi.org/10.1007/s11104-017-3523-3

Hseu Z-Y. Evaluating heavy metal contents in nine composts using four digestion methods. Bioresour Technol. 2004;95(1):53-59 https://doi.org/10.1016/j.biortech.2004.02.008

Peña Icart M. Desarrollo y aplicación de metodologías mediante la simulación de las condiciones digestivas de peces para la evaluación de la biodisponibilidad de metales en sedimentos marinos. Thesis. Cadiz, Spain: Universidad de Cádiz; 2013 (in Spanish) http://hdl.handle.net/10498/15520

Kara D, Özsavaşçi C, Alkan M. Investigation of suitable digestion methods for the determination of total phosphorus in soils. Talanta. 1997;44(11):2027-2032 https://doi.org/10.1016/S0039-9140(97)00014-3

Stamenković UM, Andrejić G, Mihailović N, Šinžar-Sekulić J. Hyperaccumulation of Ni by Alyssum murale Waldst. & Kit. from ultramafics in Bosnia and Herzegovina. Appl Ecol Environ Res. 2017;15(3):359-372 https://doi.org/10.15666/aeer/1503_359372

Xhaferri B, Shallari S, Echevarria G, Bani A. Nickel accumulation by Alyssum murale in serpentine sites of Prrenjas and Rajce, Albania. Eur Acad Res. 2018;6(8):4791-4803

Barbaroux R, Plasari E, Mercier G, Simonnot M-O, Morel J-L, Blais J-F. A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale. Sci Total Environ. 2012;423:111-119 https://doi.org/10.1016/j.scitotenv.2012.01.063

Houzelot V, Ranc B, Laubie B, Simonnot M-O. Agromining of hyperaccumulator biomass: study of leaching kinetics of extraction of nickel, magnesium, potassium, phosphorus, iron, and manganese from Alyssum murale ashes by sulfuric acid. Chem Eng Res Des. 2018;129:1-11 https://doi.org/10.1016/j.cherd.2017.10.030

Ростислав Л, Молочко В, Андреева Л. Константы Неорганических Веществ. Справочник. Москва: Дрофа; 2006 (in Russian)

Lide DR. CRC Handbook of Chemistry and Physics.85 th ed. Boca Raton, London, New York, Washington: CRC press; 2004.

Marescotti P, Comodi P, Crispini L, Gigli L, Zucchini A, Fornasaro S. Potentially toxic elements in ultramafic soils: a study from metamorphic ophiolites of the Voltri Massif (Western Alps, Italy), Minerals 2019;9:502 https://doi.org/10.3390/min9080502

Kierczak J, Pietranik A, Pędziwiatr A. Ultramafic geoecosystems as a natural source of Ni, Cr, and Co to the environment: A review. Sci Total Environ. 2020:142620 https://doi.org/10.1016/j.scitotenv.2020.142620

Pavlović P, Kostić N, Karadžić B, Mitrović M. The Soils of Serbia. Springer; 2017 https://doi.org/10.1007/978-94-017-8660-7

Tomović GM, Mihailović NL, Tumi AF, Gajić BA, Mišljenović TD, Niketić MS. Trace metals in soils and several Brassicaceae plant species from serpentine sites of Serbia. Arch Environ Prot. 2013;39(4):29-49 https://doi.org/10.1007/s11104-019-04402-5

Mišljenović T, Jovanović S, Mihailović N, Gajić B, Tomović G, Baker AJM, Echevarria G, Jakovljević K. Natural variation of nickel, zinc and cadmium (hyper) accumulation in facultative serpentinophytes Noccaea kovatsii and N. praecox. Plant Soil. 2020;447(1):475-495 https://doi.org/10.2478/aep-2013-0039

Mišljenović T, Jakovljević K, Jovanović S, Mihailović N, Gajić B, Tomović G. Micro-edaphic factors affect intra-specific variations in trace element profiles of Noccaea praecox on ultramafic soils. Environ Sci Pollut Res. 2018;25(31):31737-31751 https://doi.org/10.1007/s11356-018-3125-5

Jakovljević K, Mišljenović T, Jovanović S, Grujić M, Mihailović N, Tomović G. Plantago subulata as indicator of potentially toxic elements in the substrate. Environ Sci Pollut Res. 2021;28(16):20668-20681 https://doi.org/10.1007/s11356-020-11952-0

Bani A, Pavlova D, Garrido-Rodríguez B, Kidd PS, Konstantinou M, Kyrkas D, Morel JL, Prieto-Fernandez A, Puschenreiter M, Echevarria G. Element Case Studies in the Temperate/Mediterranean Regions of Europe: Nickel. In: van der Ent A, Baker AJM, Echevarria G, Simonnot M-O, Morel JL, eds. Agromining: farming for metals. Extracting unconventional resources using plants. 2nd ed. Cham, Switzerland: Springer Nature; 2021:341-363 https://doi.org/10.1007/978-3-030-58904-2_16

Rodrigues J, Houzelot V, Ferrari F, Echevarria G, Laubie B, Morel J-L, Simonnot M-O, Pons M-N. Life cycle assessment of agromining chain highlights role of erosion control and bioenergy. J Clean Prod. 2016;139:770-778 https://doi.org/10.1016/j.jclepro.2016.08.110

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)