Differential scanning calorimetry-based investigations of erythritol – sodium chloride phase change composites for thermal energy storage Original scientific paper

Main Article Content

Paul Gregory Felix
https://orcid.org/0000-0002-2320-7245
Velavan Rajagopal
https://orcid.org/0000-0001-5453-1972
Kannan Kumaresan
https://orcid.org/0000-0003-0301-5948

Abstract

Low thermal conductivity of organic phase change materials (PCMs) for thermal energy storage systems induces the necessity to apply suitable heat transfer enhancement techniques for these materials. The purpose of this study was to improve thermal conductivity of a PCM erythritol by using sodium chloride as an additive, such that the material can be applied for steam cooking systems when integrated with solar parabolic trough collectors. In this study, erythritol-NaCl composites were synthesized by using the melting method, and the key physicochemical properties of the composites were estimated by using differential scanning calorimetry (DSC) coupled with thermo-gravimetric analysis (TGA). The observations indicate that there has been a significant improvement in the thermal conductivity of erythritol supplemented with NaCl. Further, thermal behaviour of the material indicates that it is suitable for steam cooking applications. Furthermore, mathematical models based on the experimental observations can be potentially utilized for further studies of erythritol-NaCl composites.

Article Details

How to Cite
[1]
P. Gregory Felix, V. Rajagopal, and K. . Kumaresan, “Differential scanning calorimetry-based investigations of erythritol – sodium chloride phase change composites for thermal energy storage: Original scientific paper”, Hem Ind, vol. 76, no. 1, pp. 5–18, Feb. 2022, doi: 10.2298/HEMIND210526003F.
Section
Engineering of Materials - Composites

How to Cite

[1]
P. Gregory Felix, V. Rajagopal, and K. . Kumaresan, “Differential scanning calorimetry-based investigations of erythritol – sodium chloride phase change composites for thermal energy storage: Original scientific paper”, Hem Ind, vol. 76, no. 1, pp. 5–18, Feb. 2022, doi: 10.2298/HEMIND210526003F.

References

Indora S, Kandpal TC. Institutional cooking with solar energy: A review. Renew Sustain Energ Rev 2018;84:131–54. https://doi.org/https://doi.org/10.1016/j.rser.2017.12.001

Motwani K, Patel J. Cost analysis of solar parabolic trough collector for cooking in Indian hostel–a case study. Int J Ambient Energy 2019;0(0):1–17. https://doi.org/10.1080/01430750.2019.1653968

Kalogirou SA. Solar thermal collectors and applications. Prog Energ Combust 2004;30(3):231-295. https://doi.org/10.1016/j.pecs.2004.02.001

Ravi Kumar K, Krishna Chaitanya NVV, Sendhil Kumar N. Solar thermal energy technologies and its applications for process heating and power generation. J Clean Prod 2021;282:125296. https://doi.org/10.1016/j.jclepro.2020.125296

Koçak B, Fernandez AI, Paksoy H. Review on sensible thermal energy storage for industrial solar applications and sustainability aspects. Sol Energy 2020;209:135–69. https://doi.org/10.1016/j.solener.2020.08.081

Akba T, Baker D, Yazıcıoğlu AG. Modeling, transient simulations and parametric studies of parabolic trough collectors with thermal energy storage. Sol Energy 2020;199:497–509. https://doi.org/10.1016/j.solener.2020.01.079

Ghazouani M, Bouya M, Benaissa M, Anoune K, Ghazi M. Thermal energy management optimization of solar thermal energy system based on small parabolic trough collectors for bitumen maintaining on heat process. Sol Energy 2020;211:1403–21. https://doi.org/10.1016/j.solener.2020.10.074

Biencinto M, Bayón R, González L, Christodoulaki R, Rojas E. Integration of a parabolic-trough solar field with solid-solid latent storage in an industrial process with different temperature levels. Appl Therm Eng 2021;184:116263. https://doi.org/10.1016/j.applthermaleng.2020.116263

Shchukina EM, Graham M, Zheng Z, Shchukin DG. Nanoencapsulation of phase change materials for advanced thermal energy storage systems. Chem Soc Rev 2018;47(11):4156–75. https://doi.org/10.1039/c8cs00099a

Sutjahja IM, Rahman A, Putri RA, et al. Electrofreezing of the phase-change material CaCl2·6H2O and its impact on supercooling and the nucleation time. Hem Ind 2019;73(6):363–74. https://doi.org/10.2298/HEMIND190803034S

Jahanpanah M, Sadatinejad SJ, Kasaeian A, Jahangir MH, Sarrafha H. Experimental investigation of the effects of low-temperature phase change material on single-slope solar still. Desalination 2021;499:114799. https://doi.org/10.1016/j.desal.2020.114799

Atinafu DG, Ok YS, Kua HW, Kim S. Thermal properties of composite organic phase change materials (PCMs): A critical review on their engineering chemistry. Appl Therm Eng 2020;181:115960. https://doi.org/10.1016/j.applthermaleng.2020.115960

Magendran SS, Khan FSA, Mubarak NM, et al. Synthesis of organic phase change materials (PCM) for energy storage applications: A review. Nano-Structures and Nano-Objects 2019;20:100399. https://doi.org/10.1016/j.nanoso.2019.100399

Singh P, Sharma RK, Ansu AK, Goyal R. Study on thermal properties of organic phase change materials for energy storage. Mater Today Proc 2020;28(4):2353–7. https://doi.org/10.1016/j.matpr.2020.04.640

Sharma RK, Ganesan P, Tyagi V V., Metselaar HSC, Sandaran SC. Developments in organic solid-liquid phase change materials and their applications in thermal energy storage. Energy Convers Manag 2015;95:193–228. https://doi.org/10.1016/j.enconman.2015.01.084

Atinafu DG, Dong W, Huang X, Gao H, Wang G. Introduction of organic-organic eutectic PCM in mesoporous N-doped carbons for enhanced thermal conductivity and energy storage capacity. Appl Energy 2018;211:1203–15. https://doi.org/10.1016/j.apenergy.2017.12.025

Carly F, Vandermies M, Telek S, et al. Enhancing erythritol productivity in Yarrowia lipolytica using metabolic engineering. Metab Eng 2017;42:19–24. https://doi.org/10.1016/j.ymben.2017.05.002

Coccia G, Aquilanti A, Tomassetti S, Comodi G, Di Nicola G. Design, realization, and tests of a portable solar box cooker coupled with an erythritol-based PCM thermal energy storage. Sol Energy 2020;201:530–40. https://doi.org/10.1016/j.solener.2020.03.031

Anish R, Mariappan V, Joybari MM, Abdulateef AM. Performance comparison of the thermal behavior of xylitol and erythritol in a double spiral coil latent heat storage system. Therm Sci Eng Prog 2020;15:100441. https://doi.org/10.1016/j.tsep.2019.100441

Yuan M, Ye F, Xu C. Supercooling study of erythritol/EG composite phase change materials. Energy Procedia 2019;158:4629–34. https://doi.org/10.1016/j.egypro.2019.01.744

Junior JFR, Oliveski RDC, Rocha LAO, Biserni C. Numerical investigation on phase change materials (PCM): The melting process of erythritol in spheres under different thermal conditions. Int J Mech Sci 2018;148:20–30. https://doi.org/10.1016/j.ijmecsci.2018.08.006

Nazzi Ehms JH, De Césaro Oliveski R, Oliveira Rocha LA, Biserni C. Theoretical and numerical analysis on phase change materials (PCM): A case study of the solidification process of erythritol in spheres. Int J Heat Mass Transf 2018;119:523–32. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.124

Rakicka-Pustułka M, Mirończuk AM, Celińska E, Białas W, Rymowicz W. Scale-up of the erythritol production technology – Process simulation and techno-economic analysis. J Clean Prod 2020;257:120533. https://doi.org/10.1016/j.jclepro.2020.120533

Fleischer AS. Thermal energy storage using phase change materials: Fundamentals and applications. Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-20922-7

Casini M. Phase-change materials. Smart Build. 2016;179–218. https://doi.org/10.1016/B978-0-08-100635-1.00005-8

Kuznik F, Johannes K, David D. Integrating phase change materials (PCMs) in thermal energy storage systems for buildings. Adv. Therm. Energy Storage Syst. Methods Appl. Woodhead Publishing Limited; 2014;325–56. https://doi.org/10.1533/9781782420965.2.325

Yuan M, Ren Y, Xu C, Ye F, Du X. Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage. Renew Energy 2019;136:211–22. https://doi.org/10.1016/j.renene.2018.12.107

Shen S, Tan S, Wu S, et al. The effects of modified carbon nanotubes on the thermal properties of erythritol as phase change materials. Energy Convers Manag 2018;157:41–8. https://doi.org/10.1016/j.enconman.2017.11.072

Wang Y, Wang L, Xie N, Lin X, Chen H. Experimental study on the melting and solidification behavior of erythritol in a vertical shell-and-tube latent heat thermal storage unit. Int J Heat Mass Transf 2016;99:770–81. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.125

Singh R, Sadeghi S, Shabani B. Thermal conductivity enhancement of phase change materials for low-temperature thermal energy storage applications. Energies 2019;12(1). https://doi.org/10.3390/en12010075

Sheng N, Dong K, Zhu C, Akiyama T, Nomura T. Thermal conductivity enhancement of erythritol phase change material with percolated aluminum filler. Mater Chem Phys 2019;229:87–91. https://doi.org/10.1016/j.matchemphys.2019.02.033

Leng G, Qiao G, Xu G, Vidal T, Ding Y. Erythritol-Vermiculite form-stable phase change materials for thermal energy storage. Energy Procedia 2017;142:3363–8. https://doi.org/10.1016/j.egypro.2017.12.471

Oya T, Nomura T, Tsubota M, Okinaka N, Akiyama T. Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles. Appl Therm Eng 2013;61(2):825–8. https://doi.org/10.1016/j.applthermaleng.2012.05.033

Soni V, Kumar A, Jain VK. Performance evaluation of nano-enhanced phase change materials during discharge stage in waste heat recovery. Renew Energy 2018;127:587–601. https://doi.org/10.1016/j.renene.2018.05.009

Qu L. Investigating the Relationship between Salinity and Specific Heat Capacity. Queensl Acad n.d. http://nexusstem.co.uk/wp-content/uploads/2017/01/Queensland-Academies-1.pdf

Knowino. Density (chemistry), https://www.tau.ac.il/~tsirel/dump/Static/knowino.org/wiki/Density_(chemistry).html

Brown HM. The thermal conductivity of sodium chloride at elevated temperatures. PhD Thesis, University of Missouri, 1955. https://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=3590&context=masters_theses

Ferguson JB. The melting and freezing point of Sodium Chloride. J Phys Chem 1921;26(7):626–30

Zeng JL, Chen YH, Shu L, et al. Preparation and thermal properties of exfoliated graphite/erythritol/mannitol eutectic composite as form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells 2018;178:84–90. https://doi.org/10.1016/j.solmat.2018.01.012

Shin HK, Rhee KY, Park SJ. Effects of exfoliated graphite on the thermal properties of erythritol-based composites used as phase-change materials. Compos Part B Eng 2016;96:350–3. https://doi.org/10.1016/j.compositesb.2016.04.033

Vivekananthan M, Amirtham VA. Characterisation and thermophysical properties of graphene nanoparticles dispersed erythritol PCM for medium temperature thermal energy storage applications. Thermochim Acta 2019;676:94–103. https://doi.org/10.1016/j.tca.2019.03.037

Shawe J, Riesen R, Widmann J, Schubnell M. Interpreting DSC curves Part 1: Dynamic measurements. 2000. https://www.eng.uc.edu/~beaucag/Classes/Characterization/DSCParts/Artifacts%20in%20DSC%20Usercom_11.pdf

Calculate Activation Energy from TGA data using Origin Software. Nanoencryption https://youtu.be/eLqShUApVXM?t=403

Moon B, Jun N, Park S, Seok CS, Hong US. A study on the modified Arrhenius equation using the oxygen permeation block model of crosslink structure. Polymers (Basel) 2019;11(1). https://doi.org/10.3390/polym11010136

Peleg M, Normand MD, Corradini MG. The Arrhenius equation revisited. Crit Rev Food Sci Nutr 2012;52(9):830–51. https://doi.org/10.1080/10408398.2012.667460

Laidler KJ. The development of the arrhenius equation. J Chem Educ 1984;61(6):494–8. https://doi.org/10.1021/ed061p494

Camirand CP. Measurement of thermal conductivity by differential scanning calorimetry. Thermochim Acta 2004;417(1):1–4. https://doi.org/10.1016/j.tca.2003.12.023

Camirand C. Étude de la chaleur spécifique et de la conductivité thermique des hydrures métalliques par calorimétrie différentielle. Thèse et mémoire, Université du Québec à Trois-Rivières, 2000. https://depot-e.uqtr.ca/id/eprint/3139 in French

Flynn JH, Levin DM. A method for the determination of thermal conductivity of sheet materials by differential scanning calorimetry (DSC). Thermochim Acta 1988;126:93–100. https://doi.org/10.1016/0040-6031(88)87254-X

Niezgoda-Zelasko B. The Enthalpy-porosity Method Applied to the Modelling of the Ice Slurry Melting Process during Tube Flow. Procedia Eng 2016;157:114–21. https://doi.org/10.1016/j.proeng.2016.08.346

Eanest Jebasingh B, Valan Arasu A. A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications. Energy Storage Mater 2020;24:52–74. https://doi.org/10.1016/j.ensm.2019.07.031

Okoro HK, Odebunmi EO. Kinetics and mechanism of oxidation of sugar and sugar alcohols by KMnO4. Int J Phys Sci 2009;4(9): 673ED0819348. https://doi.org/10.5897/IJPS.9000340

Mayilvelnathan V, Valan Arasu A. Experimental investigation on thermal behavior of graphene dispersed erythritol PCM in a shell and helical tube latent energy storage system. Int J Therm Sci 2020;155:106446. https://doi.org/10.1016/j.ijthermalsci.2020.106446

Gunasekara SN, Stalin J, Marçal M, et al. Erythritol, glycerol, their blends, and olive oil, as sustainable phase change materials. Energy Procedia 2017;135:249–62. https://doi.org/10.1016/j.egypro.2017.09.517

MINITAB. Interpolation method for mesh. MINITAB. https://support.minitab.com/en-us/minitab/18/help-and-how-to/graphs/how-to/general-graph-options/display-options/interpolation-method-for-mesh/

Similar Articles

You may also start an advanced similarity search for this article.