Optimization of the active component grinding process and hydrophobization of the obtained powder fire extinguisher Technical paper

Main Article Content

Slavica R. Mihajlović
Nataša G. Đorđević
Marina N, Jovanović
Milica M. Vlahović
Ljubinko D. Savić
Aleksandra S. Patarić
Marina S. Blagojev

Abstract

This work presents a grinding process of monoammonium phosphate (MAP) as an active component in a powder fire extinguisher (PFE). The aim was to determine the grinding time for reaching the optimal particle size of MAP necessary for permanent fire extinguishing. MAP grinding was performed by using a laboratory ceramic ball mill and a vibrating cup mill. The grinding process was controlled by sieving using a 100 µm sieve at precisely defined time intervals. The efficiency of a PFE depends on the share of the -100 µm fraction of the active component, which has to exceed 60 %. The optimal grain size with 64 % of fraction of particle size -100 µm was obtained after 33 min of grinding of ≈3000 µm mm grain size MAP by using a ball mill (single-stage grinding). In two-stage process, by grinding the same initial MAP sample (≈3000 µm) in the vibro mill for 10 min, powder with the upper limit grain size of 300 µm and the mean grain diameter of 120 µm was obtained. This sample with a reduced size was further ground in the ceramic ball mill yielding 67.5 % of the fraction of particle size -100 µm after 19 min. The total time of the two-stage grinding process was 29 min. By analyzing the grinding time of MAP required to get the lowest required share of the fraction of particle size -100 µm that provides the effectiveness of formed PFE it can be concluded that 64 % of this fraction was obtained after 33 min of single-stage grinding, while only after 26 min in the two-stage process. Thus, the grinding time was reduced by 7 min indicating certain energy savings. Stability and hydrophobicity of the obtained PFE were achieved by coating with magnesium stearate (MgSt) at the content of 2 % in a ball mill for 15 min. The coating was confirmed by the standardized procedure for verification of PFE hydrophobic properties in contact with water drops. To obtained PFE had component mass ratios of MAP:AS:CC:QS:MgSt=55:20:18:5:2 (AS-ammonium sulfate; CC-calcium carbonate, QS-quartz sand) and was further characterized by chemical and granulometric analyses. The fire extinguishing efficiency of the PFE was tested in controlled conditions, whereby fires were initiated by burning solid materials and flammable liquids. In both cases, immediate elimination of flames was achieved, thus proving the efficiency of the PFE obtained in this work for practical applications..

Article Details

How to Cite
[1]
S. R. Mihajlović, “Optimization of the active component grinding process and hydrophobization of the obtained powder fire extinguisher: Technical paper”, Hem Ind, vol. 75, no. 2, pp. 65–75, Apr. 2021, doi: 10.2298/HEMIND210114012M.
Section
Chemical Engineering - General

How to Cite

[1]
S. R. Mihajlović, “Optimization of the active component grinding process and hydrophobization of the obtained powder fire extinguisher: Technical paper”, Hem Ind, vol. 75, no. 2, pp. 65–75, Apr. 2021, doi: 10.2298/HEMIND210114012M.

References

Zhao J, Yin Z, Shahid UM, Xing H, Cheng X, Fu Y, Lu S. Superhydrophobic and oleophobic ultra-fine dry chemical agent with higher chemical activity and longer fire-protection. J Hazard Mater. 2019; 380: 120625.

Huang Ch, Chen X, Yuan B, Zhang H, Shang, Sh, Zhao Q, Dai H, He S, Zhang Y, Niu Y. Insight into suppression performance and mechanisms of ultrafine powders on wood dust deflagration under equivalent concentration. J Hazard Mater. 2020; 394: 122584.

Xiaomin N, Chow WK. Fundamental suppression chemistry of clean fire suppressing agents: A Review. J Appl Fire Sci. 2011; 21(3): 223-251.

Ewing CT, Faith FR, Huges JT, Carhart HW. Flame extinguishment properties of dry chemicals: Extinction concentrations for small diffusion pan fires. Fire Technol. 1989; 25: 134-149.

Zhao G, Xu G, Jin Sh, Zhang Q, Liu Zh. Fire-Extinguishing efficiency of superfine powders under different Injection pressures. Int J Chem Eng. 2019; Article 2474370.

Su Ch, Chen Ch, Liaw HJ, SC Wang. The assessment of fire suppression capability for the ammonium dihydrogen phosphate dry powder of commercial fire extinguishers. Procedia Eng. 2014; 84: 485-490.

Huang X, Liu L, Zhou X. Experimental study on fires extinguishing performance of ammonia phosphate sub -nanometer powders. Fire Saf Sci. 2011; 4: 200 -205.

Trees D, Seshadri K. Experimental studies of flame extinction by sodium bicarbonate (NaHCO3) powders. Combust Sci Technol. 1997; 122(1/6): 215-230.

Dondur V. Hemijska kinetika. Beograd, Fakultet za fizičku hemiju; 1992.

Fudang S, Zhiming D, Xiaomin C, Linshuang Zh, Ye Y, Linming L. Experimental study on fires extinguishing properties of melamine phosphate powders. Procedia Eng. 2014; 84: 535-542.

Mihajlović S, Sekulić Ž, Radulović D, Jovanović V. Investigation the calcite hydrophobisation of different grain sizes. MME-Bor. 2016; 2: 31-40.

Mihajlović S, Sekulić Ž, Petrov M, Krstović P, Matejević B. Mikronizacija i oblaganje krečnjaka. Izgradnja. 2003; 319-321.

Mihajlović SR, Vučinić DD, Sekulić ŽT, Milićević SZ, Kolonja BM. Mechanism of stearic acid adsorption to calcite. Powder Technol. 2013; 245: 208-216.

Mihajlović S, Sekulić Ž, Radulović D, Stevanović D, Kašić V. Hidrofobizacija krečnjaka iz ležišta "Cancar" Aranđelovac upotrebom stearinske kiseline. Tehnika. 2015; 66(6): 943-946.

Mihajlović S, Sekulić Ž, Daković A, Vučinić D, Jovanović V, Stojanović J. Surface properties of natural calcite filler treated with stearic acid. Ceram-Silik. 2009; 53(4): 268-275.

Mihajlović SR, Daković AS, Sekulić ŽT, Ileš DA, Kragović MM. Površinska adsorpcija stearinske kiseline na prirodnom kalcitu. Hem Ind. 2009; 63(2): 101-106.

Đorđević N, Jovanić P. Influence of mechanical activation on electrical properties of cordierite ceramics. Sci Sinter. 2008; 40: 47-53.

Obradović N, Đorđević N, Filipović S, Nikolić N, Kosanović D, Mitrić M, Marković S, Pavlović V. Influence of mechanochemical activation on the sintering of cordierite ceramics in the presence of Bi2O3 as a functional additive. Powder Technol. 2012; 218: 157-161.

Obradović N, Đorđević N, Filipović S, Marković S, Kosanović D, Mitrić M, Pavlović V. Reaction kinetics of mechanically activated cordierite-based ceramics studied via DTA. J Therm Anal Calorim. 2016; 124(2): 667–673.

Magdalinović N. Meljivost mineralnih sirovina. Beograd, Nauka; 1997.

SRPS ISO 7202:2019: Zaštita od požara-Sredstva za gašenje požara-Prah. 2019

Izveštaj o analizi, Sistem menadžmenta kvalitetom preduzeća "Centrohem" sertifikovan u skladu sa zahtevima ISO 9001:2008. Br. sertifikata: 75.100.9854-TUV Rheinland InterCert

Lobos ZJ. Dry chemical fire extinguisher composition. US Patent 3,214,372A, 1965

Xu Z, Guo X, Yan L, Kang W. Fire-extinguishing performance and mechanism of aqueous film-forming foam in diesel pool fire. Case Stud Therm Eng. 2020; 17: Article 100578.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)