Control of the size and compositional distributions in a milling process by using a reverse breakage matrix approach

Main Article Content

Nemanja Bojanić
Aleksandar Fišteš
Tatjana Došenović
Aleksandar Takači
Mirjana Brdar
Kiyoshi Yoneda
Dušan Rakić

Abstract

A method based on the reverse breakage matrix approach is proposed for controlling the effects that milling has on the particle size distribution and composition of the comminuted material. Applicability, possibilities, and limitations of the proposed method are tested on examples related to the process of wheat flour milling. It has been shown that the reverse matrix approach can be successfully used for defining the particle size distribution of the input material leading to the desired, predetermined particle size and compositional distribution in the output material. Moreover, we have illustrated that it is possible to simultaneously control both, input and output particle size distribution, together with the composition of the output material.

Article Details

How to Cite
[1]
N. Bojanić, “Control of the size and compositional distributions in a milling process by using a reverse breakage matrix approach”, Hem Ind, vol. 75, no. 1, pp. 1–14, Mar. 2021, doi: 10.2298/HEMIND201027004B.
Section
Chemical Engineering - Process Modeling
Author Biography

Nemanja Bojanić, Faculty of Technology, University of Novi Sad, Boulevard Cara Lazara 1, 21000 Novi Sad, Serbia

Department for Carbohydrate Food Engineering, Research Associate

How to Cite

[1]
N. Bojanić, “Control of the size and compositional distributions in a milling process by using a reverse breakage matrix approach”, Hem Ind, vol. 75, no. 1, pp. 1–14, Mar. 2021, doi: 10.2298/HEMIND201027004B.

References

Earle RL. Unit Operations in Food Processing. 2nd ed. Oxford: Pergamon Press; 1983.

Prasher CL. Crushing and Grinding Process Handbook. Chicester: John Wiley&Sons; 1987.

Posner ES, Hibbs AN. Wheat Flour Milling. St. Paul, Minnesota: American Association of Cereal Chemists; 2005.

Kent NL. Technology of Cereals. Oxford: Pergamon Press; 1975.

Campbell GM, Bunn PJ, Webb C, Hook SCW. On predicting roller milling performance Part II. The breakage function. Powder Technol. 2001;115(3):243-255. https://doi.org/10.1016/S0032-5910(00)00349-1.

Farrell EP, Ward AB. Flow rates and analysis for ash and proteins of all streams in the Kansas State University pilot flour mill. Assoc Oper Millers – Bull. 1965;(March):2842-2847.

Nielsen S. Food Analysis. Springer Science & Business Media; 2014.

Bass EJ. Wheat flour milling. In: Pomeranz Y, ed. Wheat: Chemistry and Technology. 3rd ed. St.Paul, Minnesota: American Association of Cereal Chemists; 1988:1-68.

Austin LG, Bagga P. Analysis of fine dry grinding in ball mills. Powder Technol. 1981;28:83–90. https://doi.org/10.1016/0032-5910(81)87014-3.

Meloy TP, Williams MC. Problems in population balance modeling of wet grinding, Powder Technol. 1992;71:273-279. https://doi.org/10.1016/0032-5910(92)88033-E.

Bilgili E, Scarlett B. Population balance modeling of non-linear effects in milling processes. Powder Technol. 2005;153(1):59-71. https://doi:10.1016/j.powtec.2005.02.005.

Bilgili E, Capece M. Quantitative analysis of multi-particle interactions during particle breakage: a discrete non-linear population balance framework. Powder Technol. 2011;213:162-173. https://doi.org/10.1016/j.powtec.2011.07.029.

Hennart SLA, Wildeboer WJ, van Hee P, Meesters GMH. Identification of the grinding mechanisms and their origin in a stirred ball mill using population balances. Chem Eng Sci. 2009;64(19):4123-4130. https://doi:10.1016/j.ces.2009.06.031.

Baxter J, Abu-Nahar A, Tüzün U. The breakage matrix approach to inadvertent particulate degradation: dealing with intra-mixture interactions. Powder Technol. 2004;143:174-178. https://doi.org/10.1016/j.powtec.2004.04.011.

Broadbent SR, Callcott TG. Coal breakage processes: I. A new analysis of coal breakage processes. J Inst Fuel. 1956;29:524-528.

Broadbent SR, Callcott TG. Coal breakage processes: II. A matrix representation of breakage. J Inst Fuel. 1956;29(121):524-528.

Broadbent SR, Callcott TG. Coal breakage processes: IV. An exploratory analysis of the cone mill in open circuit grinding. J Inst Fuel. 1957;30:18-21.

Campbell GM, Webb C. On predicting roller milling performance: Part I: The breakage equation. Powder Technol. 2001;115:234-242. https://doi.org/10.1016/S0032-5910(00)00348-X.

Bilgili E, Capece M. A Rigorous Breakage Matrix Methodology for Characterization of Multi-Particle Interactions in Dense-Phase Particle Breakage. Chem Eng Res Des. 2012;90(9):1177-1188. https://doi.org/10.1016/j.cherd.2012.01.005.

Capece M, Bilgili E, Dave R. N. Emergence of falsified kinetics as a consequence of multi-particle interactions in dense-phase comminution processes. Chem Eng Sci. 2011;66:5672-5683. https://doi.org/10.1016/j.ces.2011.08.001.

Fistes A, Tanovic G. Predicting the size and compositional distributions of wheat flour stocks following first break roller milling using the breakage matrix approach. J Food Eng. 2006;75:527-534. https://doi.org/10.1016/j.jfoodeng.2005.04.036.

Galindez-Najera SP, Choomjaihan P, Barron C, Lullien-Pellerin V, Campbell GM. A compositional breakage equation for wheat milling. J Food Eng. 2016;182:46-64. https://doi.org/10.1016/j.jfoodeng.2016.03.001.

Fistes A, Rakic D, Takaci A, Brdar M. Using the breakage matrix approach to define the optimal particle size distribution of the input material in a milling operation. Chem Eng Sci. 2013;102:346-353. https://doi.org/10.1016/j.ces.2013.07.038.

Fistes A, Rakic D, Takaci A, Brdar M. Solution of the breakage matrix reverse problem. Powder Technol. 2014;268:412-419. https://doi.org/10.1016/j.powtec.2014.08.061.

Bojanić N, Rakić D, Takači A, Došenović T, Fišteš A. Using the breakage matrix approach for monitoring the break release in the wheat flour milling process. J Sci Food Agric. 2017;97:2205-2214. https://doi.org/10.1002/jsfa.8030.

Call ES, Judd FF. Surface fitting by separation. J Approx Theory. 1974;12:283-290.

Yoneda K. A Parallel to the Least Squares for Positive Inverse Problems. J Oper Res. 2006;49:279-289. https://doi.org/10.15807/¬jorsj.49.279.

International Association for Cereal Science and Technology (ICC) Standard No. 105/2: Determination of Crude Protein in Cereals and Cereal Products for Food and for Feed (Generic method). 1994.

International Association for Cereal Science and Technology (ICC) Standard No. 110/1: Determination of moisture content of cereals and cereal products (Practical method). 1976.

Kaluđerski G, Filipović, N. Metode ispitivanja kvaliteta žita, brašna i gotovih proizvoda. Novi Sad: Tehnološki fakultet, Zavod za tehnologiju žita i brašna; 1998. (in Serbian)

International Association for Cereal Science and Technology (ICC) Standard No. 104/1: Determination of ash in cereals and cereal products. 1990

Similar Articles

You may also start an advanced similarity search for this article.