Priprema i karakterizacija lipozoma sa inkapsuliranim bioaktivnim hidrolizatom proteina soje

Main Article Content

Neda V. Pavlović
Jelena R. Jovanović
Verica B. Đorđević
Bojana D. Balanč
Branko M. Bugarski
Zorica D. Knežević-Jugović

Abstract

Komercijalna primena hidrolizata proteina soje još uvek je ograničena zbog male bioraspoloživosti peptida, gorkog ukusa, higroskopnosti i reaktivnosti u prehrambenim proizvodima. Cilj ovog istraživanja jeste inkapsulacija hidrolizata soje u lipozome kako bi se prevazišli navedeni nedostaci, uz očuvanje bioloških aktivnosti. Hidrolizat soje inkapsuliran je u lipozome metodom tankog filma koristeći lipidnu smešu sa fosfatidilholinom. Dobijene multilamelarne vezikule tretirane su ultrazvučnim talasima visokog intenziteta frekvence 20 - 40 kHz. Najmanji i najuniformniji lipozomi, unimodalne raspodele i srednje veličine prečnika 310 nm, sa najvećom efikasnošću inkapsulacije hidrolizata od ~19 %, dobijeni su primenom ultrazvučne sonde (20 kHz). Utvrđeno je da je inkorporiranje hidrolizata ostvareno unutar lipozomne membrane uzrokovalo povećanje veličine lipozoma, npr. sa 297 na 310 nm. Sve formulacije lipozoma okarakterisane su negativnom vrednošću zeta potencijala, pri čemu je povećanje negativnog naelektrisanja ispod 30 mV u slučaju multilamelarnih vezikula ukazalo na veću stabilnost lipozoma sa inkapsuliranim hidrolizatom. Merenjem sposobnosti inhibicije ABTS•+ radikalskog katjona i sposobnosti heliranja Fe2+ jona potvrđeno je zadržavanje antioksidativne aktivnosti hidrolizata soje nakon inkapsulacije. Pripremljene lipozomne formulacije obezbeđuju produženo oslabađanje hidrolizata (2,25 puta manje) u odnosu na neinkapsuliran hidrolizat pokazujući potencijal primene u oblasti prehrambene tehnologije, za razvoj funkcionalne hrane, povećanje hranljive vrednosti i roka trajanja prehrambenih proizvoda.

Article Details

Section

Biochemical Engineering - Protein Engineering

Author Biographies

Neda V. Pavlović, Faculty of Technology and Metallurgy, University of Belgrade

Department for Biotechnology and Biochemical Engeneering

Jelena R. Jovanović, Tehnološko-metalurški fakultet, Univerzitet u Beogradu, Karnegijeva 4, 11000 Beograd, Republika Srbija

Katedra za biohemijsko inženjerstvo i biotehnologiju

Verica B. Đorđević, Inovacioni centar Tehnološko-metalurškog fakulteta u Beogradu d.o.o., Karnegijeva 4, 11000 Beograd, Republika Srbija

Katedra za hemijsko inženjerstvo

Bojana D. Balanč, Inovacioni centar Tehnološko-metalurškog fakulteta u Beogradu d.o.o., Karnegijeva 4, 11000 Beograd, Republika Srbija

 

Branko M. Bugarski, Tehnološko-metalurški fakultet, Univerzitet u Beogradu, Karnegijeva 4, 11000 Beograd, Republika Srbija

Katedra za hemijsko inženjerstvo

Zorica D. Knežević-Jugović, Tehnološko-metalurški fakultet, Univerzitet u Beogradu, Karnegijeva 4, 11000 Beograd, Republika Srbija

Katedra za biohemijsko inženjerstvo i biotehnologiju

How to Cite

[1]
N. V. Pavlović, J. R. Jovanović, V. B. Đorđević, B. D. Balanč, B. M. Bugarski, and Z. D. Knežević-Jugović, “Priprema i karakterizacija lipozoma sa inkapsuliranim bioaktivnim hidrolizatom proteina soje”, Hem Ind, vol. 74, no. 5, pp. 327–339, Nov. 2020, doi: 10.2298/HEMIND200530030P.

References

Udenigwe CC, Aluko RE. Food protein‐derived bioactive peptides: production, processing, and potential health benefits. J Food Sci. 2012; 77(1):R11–R24.

Chatterjee C, Gleddie S, Chao-Wu X. Soybean bioactive peptides and their functional properties. Nutrients. 2018; 10(9):1211.

Oliveira CF, Coletto D, Correa APF, Daroit DJ, Toniolo R, Cladera-Olivera F, Brandelli A. Antioxidant activity and inhibition of meat lipid oxidation by soy protein hydrolysates obtained with a microbial protease, Int Food Res J. 2014; 21(2): 775–781. Chen HM, Muramoto K, Yamauchi F, Fujimoto K, Nokihara K. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J Agric Food Chem. 1998; 46: 49–53.

Sugano M. Soy in health and disease prevention. 1st ed., Boca Raton, FL: CRC Press; 2005.

Peña-Ramos E., Xiong YL. Antioxidant activity of soy protein hydrolysates in a liposomal system, J Food Sci. 2002; 67(8):2952–2956.

Hirose A, Miyashita K. Inhibitory Effect of Proteins and their Hydolysates on the Oxidation of Triacylglycerols Containing Docosahexaenoic Acids in Emulsion, J Jpn Soc Food Sci. 1999; 46 (12):799–805.

Tokudome Y, Nakamura K, Kage M, Todo H, Sugibayashi K, Hashimoto F. Effects of soybean peptide and collagen peptide on collagen synthesis in normal human dermal fibroblasts. Int J Food Sci Nutr. 2012; 63(6):689–695.

Rocha GA, Trindade MA, Netto FM, Favaro-Trindade CS. Microcapsules of a casein hydrolysate: production, characterization, and application in protein bars. Food Sci Technol Res. 2009; 15(4):407–413.

Mohan, A., Rajendran, S. R., He, Q. S., Bazinet, L., Udenigwe, C. C. Encapsulation of food protein hydrolysates and peptides: a review. RSC advance. 2015; 5(97):79270–79278.

Nkanga, C. I., Bapolisi, A. M., Okafor, N. I., Krause, R. W. M. General perception of liposomes: formation, manufacturing and applications. In: Angel Catala, ed. Liposomes-advances and perspectives). IntechOpen; 2019; https://doi.org/10.5772/inte-chopen.84255

Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013; 8(1):102.

Yokota D, Moraes M, Pinho SC. Characterization of lyophilized liposomes produced with non-purified soy lecithin: a case study of casein hydrolysate microencapsulation. Braz J Chem Eng. 2012; 29(2):325–335.

Liu W, Ye A, Han F, Han J. Advances and challenges in liposome digestion: Surface interaction, biological fate, and GIT modeling. Adv Colloid Interface Sci. 2019; 263:52–67.

Segura-Campos, M., Chel-Guerrero, L., Betancur-Ancona, D., & Hernandez-Escalante, V. M.

Bioavailability of Bioactive Peptides. Food Rev. Int. 2011; 27(3), 213–226

Mohan A, Mc Clements DJ, Udenigwe CC. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight. Food Chem. 2016; 213:143–148.

Morais HA, Da Silva Barbosa CM, Delvivo FM, Mansur HS, Oliveira MC, Silvestre MPC. Comparative study of microencapsulation of casein hydrolysates in lipospheres and liposomes. J Food Biochem. 2004; 28(1):21–41.

Morais HA, De Marco LM, Oliveira MC, Silvestre MPC. Casein hydrolysates using papain: Peptide profile and encapsulation in liposomes. Acta Aliment. 2005; 34(1):59–69.

Chay SY, Tan WK, Saari N. Preparation and characterisation of nanoliposomes containing winged bean seeds bioactive peptides. J Microencapsul. 2015; 32(5):488–495.

da Rosa Zavareze E, Telles AC, El Halal SLM, da Rocha M, Colussi R, de Assis LM, de Castro LAS, Guerra Dias AR, Prentice-Hernández C. Production and characterization of encapsulated antioxidative protein hydrolysates from Whitemouth croaker (Micropogonias furnieri) muscle and byproduct. LWT-Food Sci Technol. 2014; 59(2):841–848.

Jovanovic JR, Proizvodnja biološki aktivnih peptida proteina belanceta enzimskim postupkom, izolovanje i karakterizacija. Tehnološko-metalurški fakultet, Univerzitet u Beogradu. (in Serbian) https://fedorabg.bg.ac.rs/fedo¬ra/get/o:19785/bdef:Con-tent/get

IS/ISO 5983-2 (2005): Animal feeding stuffs - Determination of nitrogen content and calculation of crude protein content, Part 2: block digestion/steam distillation method [FAD 5: Livestock Feeds, Equipment and Systems]

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1):265–275.

Jovanović JR, Stefanović AB, Žuža MG, Jakovetić SM, Šekuljica NŽ, Bugarski BM, Knežević-Jugović ZD. Improvement of antioxidant properties of egg white protein enzymatic hydrolysates by membrane ultrafiltration. Hem Ind. 2016; 70(4):419–428.

Volić M, Pajić-Lijaković I, Djordjević V, Knežević-Jugović Z, Pećinar I, Stevanović-Dajić Z, Hadnadjev M, Bugarski B. Alginate/soy protein system for essential oil encapsulation with intestinal delivery. Carbohydr Polym. 2018; 200:15–24.

Corrêa APF, Bertolini D, Lopes NA, Veras FF, Gregory G, Brandelli A. Characterization of nanoliposomes containing bioactive peptides obtained from sheep whey hydrolysates. LWT-Food Sci Technol. 2019; 101:107–112.

Yamaguchi T, Nomura M, Matsuoka T, Koda S. Effects of frequency and power of ultrasound on the size reduction of liposome. Chem Phys Lipids. 2009; 160(1):58–62.

Saito H, Ishihara K. Antioxidant activity and active sites of phospholipids as antioxidants. J Amer Oil Chem Soc. 1997; 74:1531–1536.

Mosquera M, Giménez B, da Silva IM, Boelter JF, Montero P, Gómez-Guillén MC, Brandelli A. Nanoencapsulation of an active peptidic fraction from sea bream scales collagen. Food Chem. 2014; 156:144–150.

Ramezanzade L, Hosseini SF, Nikkhah M. Biopolymer-coated nanoliposomes as carriers of rainbow trout skin-derived antioxidant peptides. Food Chem. 2017; 234:220–229.

[31]Hosseini SF, Ramezanzade L, Nikkhah M. Nano-liposomal entrapment of bioactive peptidic fraction from fish gelatin hydrolysate. Int J Biol Macromol. 2017; 105:1455–1463.

Liu W, Ye A, Han F, Han J. Advances and challenges in liposome digestion: Surface interaction, biological fate, and GIT modeling. Adv Colloid Interfac. 2019; 263:52–67.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)