Priprema i karakterizacija lipozoma sa inkapsuliranim bioaktivnim hidrolizatom proteina soje
Main Article Content
Abstract
Komercijalna primena hidrolizata proteina soje još uvek je ograničena zbog male bioraspoloživosti peptida, gorkog ukusa, higroskopnosti i reaktivnosti u prehrambenim proizvodima. Cilj ovog istraživanja jeste inkapsulacija hidrolizata soje u lipozome kako bi se prevazišli navedeni nedostaci, uz očuvanje bioloških aktivnosti. Hidrolizat soje inkapsuliran je u lipozome metodom tankog filma koristeći lipidnu smešu sa fosfatidilholinom. Dobijene multilamelarne vezikule tretirane su ultrazvučnim talasima visokog intenziteta frekvence 20 - 40 kHz. Najmanji i najuniformniji lipozomi, unimodalne raspodele i srednje veličine prečnika 310 nm, sa najvećom efikasnošću inkapsulacije hidrolizata od ~19 %, dobijeni su primenom ultrazvučne sonde (20 kHz). Utvrđeno je da je inkorporiranje hidrolizata ostvareno unutar lipozomne membrane uzrokovalo povećanje veličine lipozoma, npr. sa 297 na 310 nm. Sve formulacije lipozoma okarakterisane su negativnom vrednošću zeta potencijala, pri čemu je povećanje negativnog naelektrisanja ispod 30 mV u slučaju multilamelarnih vezikula ukazalo na veću stabilnost lipozoma sa inkapsuliranim hidrolizatom. Merenjem sposobnosti inhibicije ABTS•+ radikalskog katjona i sposobnosti heliranja Fe2+ jona potvrđeno je zadržavanje antioksidativne aktivnosti hidrolizata soje nakon inkapsulacije. Pripremljene lipozomne formulacije obezbeđuju produženo oslabađanje hidrolizata (2,25 puta manje) u odnosu na neinkapsuliran hidrolizat pokazujući potencijal primene u oblasti prehrambene tehnologije, za razvoj funkcionalne hrane, povećanje hranljive vrednosti i roka trajanja prehrambenih proizvoda.
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
How to Cite
References
Udenigwe CC, Aluko RE. Food protein‐derived bioactive peptides: production, processing, and potential health benefits. J Food Sci. 2012; 77(1):R11–R24.
Chatterjee C, Gleddie S, Chao-Wu X. Soybean bioactive peptides and their functional properties. Nutrients. 2018; 10(9):1211.
Oliveira CF, Coletto D, Correa APF, Daroit DJ, Toniolo R, Cladera-Olivera F, Brandelli A. Antioxidant activity and inhibition of meat lipid oxidation by soy protein hydrolysates obtained with a microbial protease, Int Food Res J. 2014; 21(2): 775–781. Chen HM, Muramoto K, Yamauchi F, Fujimoto K, Nokihara K. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J Agric Food Chem. 1998; 46: 49–53.
Sugano M. Soy in health and disease prevention. 1st ed., Boca Raton, FL: CRC Press; 2005.
Peña-Ramos E., Xiong YL. Antioxidant activity of soy protein hydrolysates in a liposomal system, J Food Sci. 2002; 67(8):2952–2956.
Hirose A, Miyashita K. Inhibitory Effect of Proteins and their Hydolysates on the Oxidation of Triacylglycerols Containing Docosahexaenoic Acids in Emulsion, J Jpn Soc Food Sci. 1999; 46 (12):799–805.
Tokudome Y, Nakamura K, Kage M, Todo H, Sugibayashi K, Hashimoto F. Effects of soybean peptide and collagen peptide on collagen synthesis in normal human dermal fibroblasts. Int J Food Sci Nutr. 2012; 63(6):689–695.
Rocha GA, Trindade MA, Netto FM, Favaro-Trindade CS. Microcapsules of a casein hydrolysate: production, characterization, and application in protein bars. Food Sci Technol Res. 2009; 15(4):407–413.
Mohan, A., Rajendran, S. R., He, Q. S., Bazinet, L., Udenigwe, C. C. Encapsulation of food protein hydrolysates and peptides: a review. RSC advance. 2015; 5(97):79270–79278.
Nkanga, C. I., Bapolisi, A. M., Okafor, N. I., Krause, R. W. M. General perception of liposomes: formation, manufacturing and applications. In: Angel Catala, ed. Liposomes-advances and perspectives). IntechOpen; 2019; https://doi.org/10.5772/inte-chopen.84255
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013; 8(1):102.
Yokota D, Moraes M, Pinho SC. Characterization of lyophilized liposomes produced with non-purified soy lecithin: a case study of casein hydrolysate microencapsulation. Braz J Chem Eng. 2012; 29(2):325–335.
Liu W, Ye A, Han F, Han J. Advances and challenges in liposome digestion: Surface interaction, biological fate, and GIT modeling. Adv Colloid Interface Sci. 2019; 263:52–67.
Segura-Campos, M., Chel-Guerrero, L., Betancur-Ancona, D., & Hernandez-Escalante, V. M.
Bioavailability of Bioactive Peptides. Food Rev. Int. 2011; 27(3), 213–226
Mohan A, Mc Clements DJ, Udenigwe CC. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight. Food Chem. 2016; 213:143–148.
Morais HA, Da Silva Barbosa CM, Delvivo FM, Mansur HS, Oliveira MC, Silvestre MPC. Comparative study of microencapsulation of casein hydrolysates in lipospheres and liposomes. J Food Biochem. 2004; 28(1):21–41.
Morais HA, De Marco LM, Oliveira MC, Silvestre MPC. Casein hydrolysates using papain: Peptide profile and encapsulation in liposomes. Acta Aliment. 2005; 34(1):59–69.
Chay SY, Tan WK, Saari N. Preparation and characterisation of nanoliposomes containing winged bean seeds bioactive peptides. J Microencapsul. 2015; 32(5):488–495.
da Rosa Zavareze E, Telles AC, El Halal SLM, da Rocha M, Colussi R, de Assis LM, de Castro LAS, Guerra Dias AR, Prentice-Hernández C. Production and characterization of encapsulated antioxidative protein hydrolysates from Whitemouth croaker (Micropogonias furnieri) muscle and byproduct. LWT-Food Sci Technol. 2014; 59(2):841–848.
Jovanovic JR, Proizvodnja biološki aktivnih peptida proteina belanceta enzimskim postupkom, izolovanje i karakterizacija. Tehnološko-metalurški fakultet, Univerzitet u Beogradu. (in Serbian) https://fedorabg.bg.ac.rs/fedo¬ra/get/o:19785/bdef:Con-tent/get
IS/ISO 5983-2 (2005): Animal feeding stuffs - Determination of nitrogen content and calculation of crude protein content, Part 2: block digestion/steam distillation method [FAD 5: Livestock Feeds, Equipment and Systems]
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1):265–275.
Jovanović JR, Stefanović AB, Žuža MG, Jakovetić SM, Šekuljica NŽ, Bugarski BM, Knežević-Jugović ZD. Improvement of antioxidant properties of egg white protein enzymatic hydrolysates by membrane ultrafiltration. Hem Ind. 2016; 70(4):419–428.
Volić M, Pajić-Lijaković I, Djordjević V, Knežević-Jugović Z, Pećinar I, Stevanović-Dajić Z, Hadnadjev M, Bugarski B. Alginate/soy protein system for essential oil encapsulation with intestinal delivery. Carbohydr Polym. 2018; 200:15–24.
Corrêa APF, Bertolini D, Lopes NA, Veras FF, Gregory G, Brandelli A. Characterization of nanoliposomes containing bioactive peptides obtained from sheep whey hydrolysates. LWT-Food Sci Technol. 2019; 101:107–112.
Yamaguchi T, Nomura M, Matsuoka T, Koda S. Effects of frequency and power of ultrasound on the size reduction of liposome. Chem Phys Lipids. 2009; 160(1):58–62.
Saito H, Ishihara K. Antioxidant activity and active sites of phospholipids as antioxidants. J Amer Oil Chem Soc. 1997; 74:1531–1536.
Mosquera M, Giménez B, da Silva IM, Boelter JF, Montero P, Gómez-Guillén MC, Brandelli A. Nanoencapsulation of an active peptidic fraction from sea bream scales collagen. Food Chem. 2014; 156:144–150.
Ramezanzade L, Hosseini SF, Nikkhah M. Biopolymer-coated nanoliposomes as carriers of rainbow trout skin-derived antioxidant peptides. Food Chem. 2017; 234:220–229.
[31]Hosseini SF, Ramezanzade L, Nikkhah M. Nano-liposomal entrapment of bioactive peptidic fraction from fish gelatin hydrolysate. Int J Biol Macromol. 2017; 105:1455–1463.
Liu W, Ye A, Han F, Han J. Advances and challenges in liposome digestion: Surface interaction, biological fate, and GIT modeling. Adv Colloid Interfac. 2019; 263:52–67.