Treatment of black copper with the use of iron scrap - Part l
Main Article Content
Abstract
Currently, there is a large amount of mineral resources not being exploited in large copper mining, a clear example is black copper minerals. These resources are generally not incorporated into the extraction circuits or are not treated, either in stocks, leach pads, or debris. These exotic minerals have considerable amounts of Cu and Mn, which represent a commercial attraction. They are refractory to conventional leaching processes, therefore, for their treatment, the use of reducing agents is necessary to be able to dissolve the MnO2 present in them, which in turn allows Cu extraction. In this research, a comparative study is presented between two iron reducing agents (Fe2+ y Fe0) for the dissolution of Cu and Mn from a black copper mineral in an acidic medium, in addition, a previous pre-treatment process will be carried out (agglomerate and cure) adding NaCl to favour the reduction of MnO2. Finally, it was discovered that there is a higher kinetics of dissolution of Cu and Mn when working with Fe0 in short periods of time, although similar extractions of both elements are obtained in prolonged times. While carrying out a pre-treatment process adding NaCl, it allows to increase Cu and Mn extractions, allowing to obtain high solutions in short periods of time (30 min).
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
How to Cite
References
Comisión Chilena del Cobre Sulfuros primarios : desafíos y oportunidades Available online: https://www.cochilco.cl/Listado Temtico/sulfuros primarios_desafíos y oportunidades.pdf.
Servicio Nacional de Geología y Minería Anuario de la minería de Chile; Servicio Nacional de Geología y Minería: Santiago, Chile, 2017; ISBN 0066-5096.
International Copper Study Group The World Copper Factbook 2017. 2017.
Toro, N.; Briceño, W.; Pérez, K.; Cánovas, M.; Trigueros, E.; Sepúlveda, R.; Hernández, P. Leaching of pure chalcocite in a chloride media using sea water and waste water. Metals (Basel). 2019, 9, doi:10.3390/met9070780.
Oyarzun, R.; Oyarzún, J.; Lillo, J.; Maturana, H.; Higueras, P. Mineral deposits and Cu-Zn-As dispersion-contamination in stream sediments from the semiarid Coquimbo Region, Chile. Environ. Geol. 2007, 53, 283–294, doi:10.1007/s00254-007-0643-8.
Serbula, S.M.; Milosavljevic, J.S.; Radojevic, A.A.; Kalinovic, J. V; Kalinovic, T.S. Extreme air pollution with contaminants originating from the mining – metallurgical processes. Sci. Total Environ. 2017, 586, 1066–1075, doi:10.1016/j.scitotenv.2017.02.091.
Dijksira, R.; Senyard, B.; Shah, U.; Lee, H. Economical abatement of high-strength SO2off-gas from a smelter. J. South. African Inst. Min. Metall. 2017, 117, 1003–1007, doi:10.17159/2411-9717/2017/v117n11a2.
Aguirre, C.L.; Toro, N.; Carvajal, N.; Watling, H.; Aguirre, C. Leaching of chalcopyrite (CuFeS2) with an imidazolium-based ionic liquid in the presence of chloride. Miner. Eng. 2016, 99, 60–66, doi:10.1016/j.mineng.2016.09.016.
Bobadilla-Fazzini, R.A.; Pérez, A.; Gautier, V.; Jordan, H.; Parada, P. Primary copper sulfides bioleaching vs. chloride leaching: Advantages and drawbacks. Hydrometallurgy 2017, 168, 26–31, doi:10.1016/j.hydromet.2016.08.008.
Rodríguez, M.; Ayala, L.; Robles, P.; Sepúlveda, R.; Torres, D.; Carrillo-Pedroza, F.R.; Jeldres, R.I.; Toro, N. Leaching chalcopyrite with an imidazolium-based ionic liquid and bromide. Metals (Basel). 2020, 10, 1–13, doi:10.3390/met10020183.
Cuadra, C.P.; Rojas, S.G. Oxide mineralization at the Radomiro Tomic porphyry copper deposit, Northern Chile. Econ. Geol. 2001, 96, 387–400, doi:10.2113/gsecongeo.96.2.387.
Mora, R.; Artal, J.; Brockway, H.; Martinez, E.; Muhr, R. El Tesoro exotic copper deposit, Antofagasta región, northern Chile. In Andean metallogeny: New discoveries, concepts, and updates; 2004; pp. 187–197.
Kojima, S.; Astudillo, J.; Rojo, J.; Tristá, D.; Hayashi, K.I. Ore mineralogy, fluid inclusion, and stable isotopic characteristics of stratiform copper deposits in the coastal Cordillera of northern Chile. Miner. Depos. 2003, 38, 208–216, doi:10.1007/s00126-002-0304-5.
Menzies, A.; Campos, E.; Hernández, V.; Sola, S.; Riquelme, R. Understanding Exotic-Cu Mineralisation Part II : Characterization of " Black Copper " ore (" Cobre Negro "). 13th SGA Bienn. Meet. 2015, 3–6.
Pincheira, M..; Dagnini, A.; Kelm, U.; Helle, S. Copper Pitch Y Copper Wad: Contraste Entre Las Fases Presentes En Las Cabezas Y En Los Ripios En Pruebas De Mina sur, Chuquicamata. In Proceedings of the X Congreso Geológico Chileno; 10° CONGRESO GEOLÓGICO CHILENO 2003: Concepción, 2003; p. 10.
Pérez, K.; Toro, N.; Campos, E.; González, J.; Jeldres, R.I.; Nazer, A.; Rodriguez, M.H. Extraction of mn from black copper using iron oxides from tailings and Fe2+ as reducing agents in acid medium. Metals (Basel). 2019, 9, doi:10.3390/met9101112.
Torres, D.; Pérez, K.; Trigueros, E.; Jeldres, R.I.; Salinas-Rodríguez, E.; Robles, P.; Toro, N. Reducing-effect of chloride for the dissolution of black copper. Metals (Basel). 2020, 10, doi:10.3390/met10010123.
Benavente, O.; Hernández, M.C.; Melo, E.; Núñez, D.; Quezada, V.; Zepeda, Y. Copper Dissolution from Black Copper Ore under Oxidizing and Reducing Conditions. Metals (Basel). 2019, 9, 799, doi:10.3390/met9070799.
Benavente, O.; Hernández, M.C.; Melo, E.; Ardiles, L.; Quezada, V.; Zepeda, Y. Copper Extraction from Black Copper Ores through Modification of the Solution Potential in the Irrigation Solution. Metals (Basel). 2019, 9, 12, doi:10.3390/met9121339.
Kanungo, S.B. Rate process of the reduction leaching of manganese nodules in dilute HCl in presence of pyrite. Part I. Dissolution behaviour of iron and sulphur species during leaching. Hydrometallurgy 1999, 52, 313–330, doi:10.1016/S0304-386X(99)00023-7.
Zakeri, A.; Bafghi, M.; Shahriari, S. Dissolution Kinetics of Manganese Dioxide Ore in Sulfuric Acid in the Presence of Ferrous Ion. Iran. J. Mater. Sci. Eng. 2007, 4, 22–27.
Bafghi, M.S.; Zakeri, A.; Ghasemi, Z.; Adeli, M. Reductive dissolution of manganese ore in sulfuric acid in the presence of iron metal. Hydrometallurgy 2008, 90, 207–212, doi:10.1016/j.hydromet.2007.07.003.
Toro, N.; Saldaña, M.; Gálvez, E.; Cánovas, M.; Trigueros, E.; Castillo, J.; Hernández, P.C. Optimization of Parameters for the Dissolution of Mn from Manganese Nodules with the Use of Tailings in An Acid Medium. Minerals 2019, 9, 387, doi:10.3390/min9070387.
Saldaña, M.; Toro, N.; Castillo, J.; Hernández, P.; Trigueros, E.; Navarra, A. Development of an Analytical Model for the Extraction of Manganese from Marine Nodules. Metals (Basel). 2019, 9, 903, doi:10.3390/met9080903.
Pérez, K.; Villegas, Á.; Saldaña, M.; Jeldres, R.I.; González, J.; Toro, N. Initial investigation into the leaching of manganese from nodules at room temperature with the use of sulfuric acid and the addition of foundry slag—Part II. Sep. Sci. Technol. 2020, doi:10.1080/01496395.2020.1713816.
Torres, D.; Ayala, L.; Saldaña, M.; Cánovas, M.; Nieto, S.; Castillo, J.; Robles, P.; Toro, N. Leaching manganese nodules in an acid medium and room temperature comparing the use of different fe reducing agents. Metals (Basel). 2019, 9, doi:10.3390/met9121316.
Toro, N.; Jeldres, R.I.; Órdenes, J.A.; Robles, P.; Navarra, A. Manganese Nodules in Chile , an Alternative for the Production of Co and Mn in the Future — A Review. Minerals 2020, 10, 1–19, doi:10.3390/min10080674.
Saldaña, M.; Gálvez, E.; Jeldres, R.I.; Díaz, C.; Robles, P.; Sinha, M.K.; Toro, N. Optimization of cu and mn dissolution from black coppers by means of an agglomerate and curing pretreatment. Metals (Basel). 2020, 10, doi:10.3390/met10050657.
Bahamonde, F.; Gómez, M.; Navarro, P. Pre-treatment with sodium chloride and sulfuric acid of a bornitic concentrate and later leaching in chloride solution. In Proceedings of the Leaching and Bioleaching of Sulfide Concentrates and Minerals, Hydroprocess-ICMSE; Santiago, Chile, 2017.
Velásquez-yévenes, L.; Torres, D.; Toro, N. Hydrometallurgy Leaching of chalcopyrite ore agglomerated with high chloride concentration and high curing periods. Hydrometallurgy 2018, 181, 215–220, doi:10.1016/j.hydromet.2018.10.004.
Cerda, C.P.; Taboada, M.E.; Jamett, N.E.; Ghorbani, Y.; Hernández, P.C. Effect of pretreatment on leaching primary copper sulfide in acid-chloride media. Minerals 2018, 8, 1–14, doi:10.3390/min8010001.
Toro, N.; Herrera, N.; Castillo, J.; Torres, C.; Sepúlveda, R. Initial Investigation into the Leaching of Manganese from Nodules at Room Temperature with the Use of Sulfuric Acid and the Addition of Foundry Slag—Part I. Minerals 2018, 8, 565, doi:10.3390/min8120565.
Wang, Y.; Zhou, C. Hydrometallurgical process for recovery of cobalt from zinc plant residue. Hydrometallurgy 2002, 63, 225–234, doi:10.1016/S0304-386X(01)00213-4.