Development of an empirical model for copper extraction from chalcocite in chloride media

Main Article Content

Manuel Saldaña
https://orcid.org/0000-0001-9265-1529
Freddy Rodríguez
Anyelo Rojas
Kevin Pérez
https://orcid.org/0000-0002-6492-7855
Hugo Javier Angulo Palma

Abstract

Multivariate models are a useful tool when studying the effects of independent variables on one or more dependent variables, since this approach allows modeling of the dynamics of complex systems based on simple analytical models with considerable certainty. Due to the decrease in the copper oxide mineral grades, leaching of copper sulfide minerals (secondary sulfides) has positioned itself as a benchmark of operation for the Chilean mining industry. The present work proposes the study of the effects of sulfuric acid, chloride concentration and time on the extraction of copper from sulfuric minerals (chalcocite), considering an experimental design, the surface optimization methodology and the adjustment of a quadratic model. The experimental data were adjusted by multiple regression analysis and were statistically analyzed. A model was developed to represent the copper extraction from the Cu2S mineral as a function of the statistically significant variables (chloride concentration and time) that contribute to explain the variation of the response variable under the set of parameters sampled.

Article Details

How to Cite
[1]
M. Saldaña, F. Rodríguez, A. Rojas, K. Pérez, and H. J. Angulo Palma, “Development of an empirical model for copper extraction from chalcocite in chloride media”, Hem Ind, vol. 74, no. 5, pp. 285–292, Nov. 2020, doi: 10.2298/HEMIND200424031S.
Section
Chemical Engineering - General
Author Biographies

Manuel Saldaña, Facultad de Ingeniería y Arquitectura, Universidad Arturo Prat, Antofagasta 1244260, Chile and Departamento de Ingeniería Metalúrgica y Minas, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta 1270709, Chile

Facultad de Ingeniería y Arquitectura

Freddy Rodríguez, Departamento de Ingeniería Metalúrgica y Minas, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta 1270709, Chile

Departamento de Ingeniería Metalúrgica y Minas, Facultad de Ingeniería y Arquitectura

Anyelo Rojas, Departamento de Ingeniería Metalúrgica y Minas, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta 1270709, Chile

Departamento de Ingeniería Metalúrgica y Minas, Facultad de Ingeniería y Arquitectura

Kevin Pérez, Departamento de Ingeniería Química y Procesos de Minerales, Facultad de Ingeniería, Universidad de Antofagasta, Antofagasta 1270300, Chile

Departamento de Ingeniería Química y Procesos de Minerales, Facultad de Ingeniería

Hugo Javier Angulo Palma, Centro de Investigaciones del Níquel (CEDINIQ), Moa, Holguín, Cuba and Departamento de Metalurgia y Materiales, Universidad de Moa, Holguín, Cuba

Departamento de Metalurgia y Materiales, Universidad de Moa

How to Cite

[1]
M. Saldaña, F. Rodríguez, A. Rojas, K. Pérez, and H. J. Angulo Palma, “Development of an empirical model for copper extraction from chalcocite in chloride media”, Hem Ind, vol. 74, no. 5, pp. 285–292, Nov. 2020, doi: 10.2298/HEMIND200424031S.

References

Consejo Minero. Minería En Cifras. Santiago, Chile; 2017.

Consejo Minero. Cifras Actualizadas de La Minería. Santiago, Chile; 2018.

Pérez K, Toro N, Campos E, González J, Jeldres RI, Nazer A, Rodriguez MH. Extraction of Mn from Black Copper Using Iron Oxides from Tailings and Fe2+ as Reducing Agents in Acid Medium. Metals (Basel). 2019;9(10):1112.

Servicio Nacional de Geología y Minería. Anuario de La Mineria de Chile 2017. Santiago, Chile; 2017.

Demergasso C, Véliz R, Galleguillos P, Marín S, Acosta M, Zepeda V, Zeballos J, Henríquez F, Pizarro R, Bekios-Calfa J. Decision support system for bioleaching processes. Hydrometallurgy. 2018;181:113-122.

Toro N, Robles P, Jeldres RI. Seabed mineral resources, an alternative for the future of renewable energy: A critical review. Ore Geol Rev. 2020;126:103699.

Torres D, Pérez K, Trigueros E, I. Jeldres R, Salinas-Rodríguez E, Robles P, Toro N. Reducing-Effect of Chloride for the Dissolution of Black Copper. Metals (Basel). 2020;10(1):123.

Centro de Estudios del Cobre y la Minería. La Minería Como Plataforma Para El Desarrollo: Hacia Una Relación Integral y Sustentable de La Industria Minera En Chile. Santiago, Chile; 2013.

Comisión Chilena del Cobre. Minería En Chile: Impacto En Regiones y Desafíos Para Su Desarrollo. 1st ed. (Betancour MC, Maldonado P, eds.). Santiago, Chile: Salesianos; 2013.

Toro N, Jeldres RI, Órdenes JA, Robles P, Navarra A. Manganese Nodules in Chile, an Alternative for the Production of Co and Mn in the Future—A Review. Minerals. 2020;10(8):674.

Comisión Chilena del Cobre. Sulfuros Primarios: Desafíos y Oportunidades. Santiago, Chile; 2017.

Comisión Nacional de Productividad. Productividad En La Gran Minería Del Cobre. Santiago, Chile; 2017.

Torres D, Ayala L, Jeldres RI, Cerecedo-Sáenz E, Salinas-Rodríguez E, Robles P, Toro N. Leaching Chalcopyrite with High MnO2 and Chloride Concentrations. Metals (Basel). 2020;10(1):107.

Costabal F. Fundiciones de Cobre En Chile. Santiago, Chile; 2015.

Araya G, Toro N, Castillo J, Guzmán D, Guzmán A, Hernández P, Jeldres RI, Sepúlveda R. Leaching of oxide copper ores by addition of weak acid from copper smelters. Metals (Basel). 2020;10(5):16-20.

Toro N, Pérez K, Saldaña M, Jeldres RI, Jeldres M, Cánovas M. Dissolution of pure chalcopyrite with manganese nodules and waste water. J Mater Res Technol. 2020;9(1):798-805.

Toro N, Briceño W, Pérez K, Cánovas M, Trigueros E, Sepúlveda R, Hernández P. Leaching of Pure Chalcocite in a Chloride Media Using Sea Water and Waste Water. Metals (Basel). 2019;9(7):780.

Conejeros V, Pérez K, Jeldres RI, Castillo J, Hernández P, Toro N. Novel treatment for mixed copper ores: Leaching ammonia – Precipitation – Flotation (L.A.P.F.). Miner Eng. 2020;149(December 2019):106242.

Niu X, Ruan R, Tan Q, Jia Y, Sun H. Study on the second stage of chalcocite leaching in column with redox potential control and its implications. Hydrometallurgy. 2015;155:141-152.

Miki H, Nicol M, Velásquez-Yévenes L. The kinetics of dissolution of synthetic covellite, chalcocite and digenite in dilute chloride solutions at ambient temperatures. Hydrometallurgy. 2011;105(3-4):321-327.

Cisternas LA, Gálvez ED. The use of seawater in mining. Miner Process Extr Metall Rev. 2018;39(1):18-33.

Robles P, Piceros E, Leiva WH, Valenzuela J, Toro N, Jeldres RI. Analysis of sodium polyacrylate as a rheological modifier for kaolin suspensions in seawater. Appl Clay Sci. 2019;183.

Jeldres M, Piceros EC, Toro N, Robles P, Nieto S, Quezada GR, Jeldres RI. Enhancing the sedimentation of clay-based tailings in seawater by magnesium removal treatment. Sep Purif Technol. 2020;242(November 2019):116762.

Quezada GR, Jeldres M, Toro N, Robles P, Toledo PG, Jeldres RI. Understanding the flocculation mechanism of quartz and kaolinite with polyacrylamide in seawater: A molecular dynamics approach. Colloids Surfaces A Physicochem Eng Asp. 2021;608(July).

Hernández P, Gahona G, Martínez M, Toro N, Castillo J. Caliche and Seawater, Sources of Nitrate and Chloride Ions to Chalcopyrite Leaching in Acid Media. Metals (Basel). 2020;10(4):551.

Hernández P, Dorador A, Martínez M, Toro N, Castillo J, Ghorbani Y. Use of Seawater/Brine and Caliches Salts as Clean and Environmentally Friendly Sources of Chloride and Nitrate Ions for Chalcopyrite Concentrate Leaching. Minerals. 2020;10(5):477.

Hernández PC, Taboada ME, Herreros OO, Graber TA, Ghorbani Y. Leaching of chalcopyrite in acidified nitrate using seawater-based media. Minerals. 2018;8(6).

Cheng CY, Lawson F. The kinetics of leaching chalcocite in acidic oxygenated sulphate-chloride solutions. Hydrometallurgy. 1991;27(3):249-268.

Hashemzadeh M, Liu W. The response of sulfur chemical state to different leaching conditions in chloride leaching of chalcocite. Hydrometallurgy. 2020;192(December 2019):105245.

Tanda BC, Eksteen JJ, Oraby EA. Kinetics of chalcocite leaching in oxygenated alkaline glycine solutions. Hydrometallurgy. 2018;178(2017):264-273.

Castillo J, Sepúlveda R, Araya G, Guzmán D, Toro N, Pérez K, Rodríguez M, Navarra A. Leaching of white metal in a NaCl-H2SO4 system under environmental conditions. Minerals. 2019;9(5).

DE GIORGIS V. Competitividad de la industria minera Análisis de las problemáticas de la minería chilena. 2016.

Peñailillo S. Desarrollo de Un Proyecto Minero. Santiago, Chile; 2009.

Velásquez-Yévenes L, Torres D, Toro N. Leaching of chalcopyrite ore agglomerated with high chloride concentration and high curing periods. Hydrometallurgy. 2018;181:215-220.

Dixon DG, Hendrix JL. A mathematical model for heap leaching of one or more solid reactants from porous ore pellets. Metall Trans B. 1993;24(6):1087-1102.

Dixon DG, Hendrix JL. A general model for leaching of one or more solid reactants from porous ore particles. Metall Trans B. 1993;24(1):157-169.

Mellado ME, Cisternas LA, Gálvez ED. An analytical model approach to heap leaching. Hydrometallurgy. 2009;95(1-2):33-38.

Mellado ME, Casanova MP, Cisternas LA, Gálvez ED. On scalable analytical models for heap leaching. Comput Chem Eng. 2011;35(2):220-225.

Mellado ME, Gálvez ED, Cisternas LA. Stochastic analysis of heap leaching process via analytical models. Miner Eng. 2012;33:93-98.

Mellado M, Cisternas L, Lucay F, Gálvez E, Sepúlveda F. A Posteriori Analysis of Analytical Models for Heap Leaching Using Uncertainty and Global Sensitivity Analyses. Minerals. 2018;8(2):44.

Saldaña M, Toro N, Castillo J, Hernández P, Navarra A. Optimization of the Heap Leaching Process through Changes in Modes of Operation and Discrete Event Simulation. Minerals. 2019;9(7):421.

Saldaña M, González J, Jeldres R, Villegas Á, Castillo J, Quezada G, Toro N. A Stochastic Model Approach for Copper Heap Leaching through Bayesian Networks. Metals (Basel). 2019;9(11):1198.

Pérez K, Jeldres RI, Nieto S, Salinas-Rodríguez E, Robles P, Quezada V, Hernández-ávila J, Toro N. Leaching of pure chalcocite in a chloride media using waste water at high temperature. Metals (Basel). 2020;10(3):1-9.

Dean A, Voss D, Draguljic D. Response Surface Methodology. In: Design and Analysis of Experiments. ; 2017:565-614.

Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76(5):965-977.

Kenett R, Zacks S. Modern Industrial Statistics: With Applications in R, MINITAB and JPM. Vol 91.; 2017.

Minitab LLC. Getting Started with Minitab 18. 2017:73.

Mathews PG. Design of Experiments with MINITAB. Milwaukee: William A. Tony; 2005.

Berger PD, Maurer RE, Celli GB. Multiple Linear Regression. In: Experimental Design. Cham: Springer International Publishing; 2018:505-532.

Montgomery DC, Runger GC. Applied Statistics and Probalisty for Engineers.; 2014.

Devore J. Probability & Statistics for Engineering and the Sciences. 8th ed. (Julet M, ed.). Boston, MA, USA: Cengage Learning; 2010.

Python Software Foundation. Python 3.7.0. www.python.org/psf-landing/. 2019.

Pérez K, Toro N, Saldaña M, Salinas-Rodríguez E, Robles P, Torres D, Jeldres RI. Statistical Study for Leaching of Covellite in a Chloride Media. Metals (Basel). 2020;10(4):477.

Aguirre CL, Toro N, Carvajal N, Watling H, Aguirre C. Leaching of chalcopyrite (CuFeS2) with an imidazolium-based ionic liquid in the presence of chloride. Miner Eng. 2016;99:60-66.

Sokić, Marković, Stanković, Kamberović, Štrbac, Manojlović, Petronijević. Kinetics of Chalcopyrite Leaching by Hydrogen Peroxide in Sulfuric Acid. Metals (Basel). 2019;9(11):1173.

Wang J, Faraji F, Ghahreman A. Effect of Ultrasound on the Oxidative Copper Leaching from Chalcopyrite in Acidic Ferric Sulfate Media. Minerals. 2020;10(7):633.