High temperature materials: properties, demands and applications

Main Article Content

Marko Simić
Ana Alil
Sanja Martinović
Milica Vlahović
Aleksandar Savić
Tatjana Volkov-Husović
https://orcid.org/0000-0002-2667-5802

Abstract

High-temperature materials are used in a wide range of industries and applications such as gas turbine engines for aircrafts, power and nuclear power plants, different types of furnaces, including blast furnaces, some fuel cells, industrial gas turbines, different types of reactors, engines, electronic and lighting devices, and many others. Demands for high-temperature materials are becoming more and more challenging every year. To perform efficiently, effectively and at the same time to be economically viable, the materials used at high temperatures must have certain characteristics that are particularly expected for applying under such extreme conditions, for example, the strength and thermal resistance. In the present review, some important requirements that should be satisfied by high temperature materials will be discussed. Furthermore, the focus is put on refractory concretes, ceramics, intermetallic alloys, and composites as four different categories of these materials, which are also considered in respect to possibilities to overcome some of the current challenges.

Article Details

How to Cite
[1]
M. Simić, A. Alil, S. Martinović, M. Vlahović, A. Savić, and T. Volkov-Husović, “High temperature materials: properties, demands and applications”, Hem Ind, vol. 74, no. 4, pp. 273–284, Sep. 2020, doi: 10.2298/HEMIND200421019S.
Section
Let's refresh our knowledge

How to Cite

[1]
M. Simić, A. Alil, S. Martinović, M. Vlahović, A. Savić, and T. Volkov-Husović, “High temperature materials: properties, demands and applications”, Hem Ind, vol. 74, no. 4, pp. 273–284, Sep. 2020, doi: 10.2298/HEMIND200421019S.

References

Meetham GW, Van de Voorde MH. Materials for High Temperature Engineering Applications. 1st ed., Berlin Heidlberg: Springer-Verlag; 2000.

Gupta OP. Elements of Fuels, Furnaces and Refractories. 6th ed., New Delhi: Khanna Publishers; 2014.

Schacht CA. Refractories Handbook. 1st ed., New York, NY: Marcel Dekker, Inc.; 2004.

Bengisu M. Engineering Ceramics. 1st ed., Berlin Heidelberg: Springer-Verlag; 2001.

Spear KE, Visco S, Wuchina EJ, Wachsman ED. High Temperature Materials. Electrochem Soc Interface. 2006; 15: 48-51.

Bar-Cohen Y. High Temperature Materials and Mechanisms, 1st ed., Boca Raton, FL: CRC Press; 2017.

Clemens H, Mayer S. Intermetallic titanium aluminides in aerospace applications– processing, microstructure and properties. Mater High Temp. 2016; 33: 560-570.

Skelton RP, Gandy D. Creep– fatigue damage accumulation and interaction diagram based on metallographic interpretation of mechanisms. Mater High Temp. 2008; 25: 27-54.

Licker M. McGraw-Hill Concise Encyclopedia of Engineering. New York, NY: McGraw- Hill Education- Europe; 2005.

Naumenko K, Krüger M. Advances in Mechanics of High-Temperature Materials. 1st ed., Springer International Publishing; 2020.

Total Materia. The worlds most comprehensive database. https://www.totalmateria.com/page.aspx?ID=CheckAr-ticle&site=kts&NM=355. Accessed June 17, 2019.

Shabalin IL. Ultra-High Temperature Materials I. 1st ed., Springer Netherlands; 2014.

AZO Materials. https://www.azom.com/article.aspx?ArticleID=17267. Accessed November 27, 2019.

Blau PJ. Friction and Wear Transitions of Materials: break-in, run-in, wear-in. 1st ed., Park Ridge, New Jersey, USA: Noyes Publications; 1989.

Knowels GD. Mechanisms of Wear Particle Formation and Detachment (MSc Thesis). University of British Columbia, Vancouver; 1994.

Ludema KC. Friction, Wear, Lubrication: A Textbook in Tribology. 1st ed., Boca Raton, FL: CRC Press; 1996.

Bhushan B. Principles and Application of Tribology. 1st ed., New York, NY: A Wiley-Interscience Publication; 1999.

Zmitrowicz A. Wear Patterns and Laws of Wear– A Review. J Theor App Mech. 2006; 44: 219-253.

Drogen M van. The Transition to Adhesive Wear of Lubricated Concentrated Contacts (PhD Thesis). University of Twente, Enschede; 2005.

Kato K. Classification of Wear Mechanisms/ Models. Proc Instn Mech Engrs, Part J: J Engineering Tribology. 2002; 7: 349-355.

Wallis RA, Craighead IW. Predicting Residual Stresses in Gas Turbine Components. JOM. 1995; 47: 69-71.

Varenberg M. Towards a unified classification of wear. Friction. 2013; 1: 333-340.

Srivastava S. What are recent advantages in high-temperature materials for jet engines? https://www.presco¬ut¬er.com/-2019/06/jet-engines-high-temperature-materials/. Accessed January 23, 2020.

Martinovic S, Dojcinovic M, Dimitrijevic M, Devecerski A, Matovic B, Volkov Husovic T. Implementation of image analysis on thermal shock and cavitation resistance testing of refractory concrete. J Eur Ceram Soc. 2010; 30: 3303-3309.

Martinovic S, Vlahovic M, Boljanac T, Majstorovic J, Volkov Husovic T. Influence of sintering temperature on thermal shock behavior of low cement high alumina refractory concrete. Compos B Eng. 2014; 60: 400-412.

Martinovic S. Ispitivanje uticaja temperature sinterovanja na termostabilnost niskocementnih visokoaluminatnih vatrostalnih betona (Doctoral disseration). University of Belgrade, Faculty of Technology and Metallurgy, Belgrade; 2011. (in Serbian)

Martinovic S, Vlahovic M, Stevic Z, Volkov Husovic T. Influence of sintering temperature on low level laser (LLL) destruction of low cement high alumina refractory concrete. Eng Struct. 2015; 99: 462-467.

Tikul N, Srichandr P. Assessing the environmental impact of ceramic tile production in Thailand. J Ceram Soc Jpn. 2010; 118: 887-894.

Rivela B, Moreira MT, Feijoo G. Life cycle inventory of medium density fibreboard. Int J Life Cycle Assess. 2007; 12: 143-150.

Asif M, Muneer T, Kelley R. Life cycle assessment: A case study of a dwelling home in Scotland. Build Environ. 2007; 42: 1391-1394.

Nebel B, Zimmer B, Wegener G. Life Cycle Assessment of Wood Floor Coverings- A Representative Study for the German Flooring Industry. Int J Life Cycle Assess. 2006; 11: 172-182.

Belmonte M. Advanced Ceramic Materials for High Temperature Applications. Adv Eng Mater. 2006; 8: 693-703.

Corman GS, Dean AJ, Brabetz S, Brun MK, Luthra KL, Tognarelli L. Rig and engine testing of melt infiltrated ceramic composites for combustor and shroud applications. J Eng Gas Turb Power. 2002; 124: 459–464.

Naslain R. Design, preparation, and properties of non-oxide CMCs for application in engines and nuclear reactors: An overview. Compos Sci Technol. 2004; 64: 155-170.

Krenkel W. Applications of fibre reinforced C/C SiC ceramics. Compos Sci Technol. 2003; 80: 31-38.

Posarac M, Dimitrijevic M, Volkov-Husovic T, Majstorovic J, Matovic B. The ultrasonic and image analysis method for non-destructive quantification of the thermal shock damage in refractory specimens. Mater Des. 2009; 30: 3338-3343.

Krenkel W, Heidenreich B, Renz R. C/C-SiC composites for advanced friction systems. Adv Eng Mater. 2002; 4: 427-436.

Hirohata Y, Jinushi T, Yamauchi Y, Hashiba M, Hino T, Katoh Y, Kohyama A. Gas permeability of SiC/SiC composites as fusion reactor material. Fusion Eng Des. 2002; 61-62: 699-704.

Evans AG, Marshall DB. The Mechanical Behavior of Ceramic Matrix Composites, Fusion engineering and design. Acta Metall. 1989; 37: 2567-2583.

Cao XQ, Vassen R, Stoever D. Ceramic materials for thermal barrier coatings. J Eur Ceram Soc. 2004; 24: 1-10.

Padture NP, Gell M, Jordan E.H. Thermal Barrier Coatings for Gas-Turbine Engine Applications. Science 2002; 296: 280-284.

Smialek JL, Robinson RC, Opila EJ, Fox DS, Jacobson NS. SiC and Si3N4 Recession Due to SiO2 Scale Volatility under Combustor Conditions. Adv Composite Mater. 1999; 8: 33-45.

More KL, Tortorelli PF, Ferber MK, Keiser JR. Observations of Accelerated Silicon Carbide Recession by Oxidation at High Water-Vapor Pressures. J Am Ceram Soc. 2000; 83: 211-213.

Robinson RC, Smialek JL. SiC recession caused by SiO2 scale volatility under combustion conditions: I. Experimental results and empirical model. J Am Ceram Soc. 1999; 82: 1817-1825.

Minh NQ. Ceramic fuel cells. J Am Ceram Soc. 1993; 76: 563-588.

Steele BCH, Heinzel A. Materials for Fuel-Cell Technologies. Nature. 2001; 414: 345-352.

Yamamoto O. Solid oxide fuel cells: fundamental aspects and prospects. Electrochim Acta. 2000; 45: 2423-2435.

Singh P, Minh, NQ. Solid Oxide Fuel Cells: Technology Status. Int J Appl Ceram Technol. 2004; 1: 5-15.

Brandon NP, Skinner S, Steele BCH. Recent advances in materials for fuel cells. Annu Rev Mater Res. 2003; 33: 183-213.

Kharton VV, Marques FMB, Atkinson A. Properties of solid oxide electrolyte ceramics: a brief review. J Solid Stat Ion. 2004; 174: 135-149.

Atkinson A, Barnett S, Gorte RJ, Irvine JTS, Mcevoy AJ, Mogensen M. Advanced anodes for high-temperature fuel cells. Nat Mater. 2004; 3: 17-27.

Zhu WZ, Deevi SC. Development of Interconnect Materials for Solid Oxide Fuel Cells. Mater Sci Eng A-Struct. 2003; 348: 227-243.

Fleischer RL. High-strength, high-temperature intermetallic compounds. J Mater Sci. 1987; 22: 2281-2288.

Fleischer RL, Field RD, Briant CL. High-Temperature Behavior of Precious Metal Base Composites. Metall Trans A. 1991; 22A: 129-137.

Frost HJ, Ashby MF. Deformation-mechanism maps. Oxford: Pergamon Press; 1982.

Traiber AJS, Allen SM, Turchi PEA, Waterstrat RM. Electronic structure and phase equilibria in ternary substitutional alloys (Report). Lawrence Livermore National Laboratory, Livermore, California; 1996.

Sikka VK. Intermetallic-Based High-Temperature Materials. In: Proceedings of CORROSION 99. San Antonio, Texas, 1999, pp. 1-21.

Boyd J, Chang G. Bismaleimide composites for advanced high-temperature applications. In: Proceedings of 38th International SAMPE Symposium. Covina, California, 1993, pp. 357-369.

Stenzenberger H. BMI/bis (allyl phenoxyphthalimide)-copolymers: Improved thermal oxidative stability. In: Proceedings of 36th International SAMPE Symposium and Exhibition. San Diego, California, 1991, pp. 1232-1243.

Shimp V, David A. Speciality matrix resins. In: Peters ST, ed. Handbook of composites. 2nd ed. London: Chapman & Hall; 1998: 99-114.

Parker J, Kourtides, D, Fohlen, G. Bismaleimides and related maleimido polymers as matrix resins for high-temperature environments. In: Serafini TT, ed. High temperature polymer matrix composites. Park-Ridge, NJ, USA: Noyes Data Corporation; 1987: 54-75.

Volkov-Husovic T, Jancic RM, Cvetkovic M, Mitrakovic D, Popovic Z. Thermal shock behavior of alumina based refractories: fracture resistance parameters and water quench test. Mater Lett. 1999; 38: 372-378.

Marenovic S, Dimitrijevic M, Volkov Husovic T, Matovic B. Thermal shock damage characterization of refractory composites. Ceram Int. 2008; 34: 1925-1929.

Luković J, Milovanović D, Kumar R, Kijevčanin M, Radović I, Matović B, Volkov-Husović T. Synthesis and characterization of porous tungsten carbide with added tungsten silicides. Int J Refract Met Hard Mater. 2018; 72: 9-14.

Vuksanović M, Gajić-Kvaščev M, Dojčinović M, Volkov Husović T, Jančić Heinemann R. New surface characterization tools for alumina based refractory material exposed to cavitation- Image analysis and pattern recognition approach. Mater Charact. 2018; 144: 113-119.

Dimitrijevic M, Posarac M, Majstorovic J, Volkov-Husovic T, Matovic B. Behavior of silicon carbide/cordierite composite material after cyclic ther mal shock. Ceram Int. 2009; 35: 1077-1081.

Posarac M, Dimitrijevic M, Volkov-Husovic T, Devecerski A, Matovic B. Determination of thermal shock resistance of silicon carbide/cordierite composite material using nondestructive test methods. J Eur Ceram Soc. 2008; 28: 1275-1278.

Posarac-Markovic M, Veljovic Dj, Devecerski A, Matovic B, Volkov-Husovic T. Nondestructive evaluation of surface degradation of silicon carbide- cordierite ceramics subjected to the erosive wear. Mater Des. 2013; 52: 295-299.

Matovic B, Bucevac D, Urbanovic V, Stankovic N, Daneu N, Volkov-Husovic T, Babic B. Monolithic nanocrystalline SiC ceramics. J Eur Ceram Soc. 2016; 36: 3005-3010.

Martinovic S, Vlahovic M, Boljanac T, Dojcinovic M, Volkov Husovic T. Cavitation resistance of refractory concrete: Influence of sintering temperature. J Eur Ceram Soc. 2013; 33: 7-14.

Vlahovic M, Jovanovic P, Martinovic S, Boljanac T, Volkov Husovic T. Quantitative evaluation of sulfur–polymer matrix composite quality. Compos B Eng. 2013; 44: 458-466.

Vlahovic M, Savic M, Martinovic S, Boljanac T, Volkov-Husovic T. Use of image analysis for durability testing of sulfur concrete and Portland cement concrete. Mater Des. 2012; 34: 346-354.

Ignjatović I, Marinković S, Mišković Z, Savić A. Flexural behavior of reinforced recycled aggregate concrete beams under short-term loading. Mater Struct. 2013; 46: 1045-1059.

Jevtić D, Zakić D, Savić A. Investigation of cement based composites made with recycled rubber aggregate. Hem Ind. 2012; 66: 609-617.

Shenoi RA, Dulieu-Barton JM, Quinn S, Blake JIR, Boyd SW. Composite materials for marine applications: key challenges for the future. In: Nicolais L, Meo M, Milella E, eds. Composite Materials. 1st ed. London: Springer; 2011: 69-89.

Vasic G, Franklin FJ, Kapoor A. New Rail Materials and Coatings, Prepared for The Railway Safety and Standards Board (Report: RRUK/A2/1). University of Sheffield; 2003.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)