Liquid transfer properties of textile fabrics as a function of moisture content

Main Article Content

Milada S Novaković
Jovana Milanović
Dragana Grujić
Snežana B Stanković

Abstract

Liquid transport in textile fabrics determines thermal comfort during high physical activity of a person when liquid perspiration is produced and needs to be transferred away from the skin to keep the thermal balance. In this investigation, an attempt was made to get some indications of how the combination of the fabric composition, geometry and dimensional stability, and the moisture content influences liquid transfer properties of plain weft knitted fabrics. Therefore, the knitted fabrics made from pure hydrophilic (hemp fibres), pure hydrophobic (acrylic fibres) and a hydrophilic/hydrophobic (hemp/acrylic) fibre blend underwent a trial wear and care period. TheMaldenMills water distribution test was performed for the knitted fabrics with different moisture contents (0-30 %) in order to evaluate the effect on liquid transfer properties. Water transfer ability and water holding capacity of the knitted fabrics were also determined after undergoing the wear trial test. The obtained results were analysed with respect to macro and micro scales of porosity of knitted fabrics. It has been shown that the geometric configuration of the complex porous network in knitted fabrics influenced their liquid transfer properties in the whole moisture content range regardless of the composition. Despite the reconfiguration of the pore system in the knits during the trial period, their liquid transfer properties were still dependent on the pore size and distribution.

Article Details

How to Cite
[1]
M. S. Novaković, J. Milanović, D. Grujić, and S. B. Stanković, “Liquid transfer properties of textile fabrics as a function of moisture content”, Hem Ind, vol. 74, no. 2, pp. 119–132, May 2020, doi: 10.2298/HEMIND190925008N.
Section
Engineering of Materials - Polymers

How to Cite

[1]
M. S. Novaković, J. Milanović, D. Grujić, and S. B. Stanković, “Liquid transfer properties of textile fabrics as a function of moisture content”, Hem Ind, vol. 74, no. 2, pp. 119–132, May 2020, doi: 10.2298/HEMIND190925008N.

References

Li J. The science of clothing comfort. Textile Progress 2001; 31(1-2): 1-135.

Kissa E. Wetting and wicking. Text Res J. 1996; 66(10): 660-668.

Dent RW. Transient comfort phenomena due to sweating. Text Res J. 2001; 71(9): 796-806.

Onofrei E, Rocha AM, Catarino A. The influence of knitted fabrics structure on the thermal and moisture management properties. J Eng Fiber Fabric 2011; 6(4): 10-22.

Sampath MB, Senthilkumar M, Effect of moisture management finish on comfort characteristics of microdenier polyester knitted fabricsfabrics. J Ind Text 2009; 39(2): 163-173.

Lee JJ, Ji DS. Evaluation of liquid moisture management properties on hemp woven fabrics treated with liquid ammonia. Text Res J. 2017; 87(14): 1752-1764.

Su C-I, Fang J-X. Optimum drafting conditions of non-circular polyester and cotton blend yarn. Text Res J. 2006; 76(6): 441-447.

Varshney RK, Kothari VK, Dhamija S. A study on thermophysiological comfort properties of fabrics in relation to constituent fibre fineness and cross-sectional shapes. J Text Inst. 2010; 101(6): 495-505.

Manshahia M, Das A. Comfort Characteristics of knitted active sportswear: liquid water transportation. RJTA 2013; 17(3): 38-49.

Cil MG, Nergis UB, Candan C. An experimental study of some comfort-related properties of cotton-acrylic knitted fabrics. Text Res J. 2009; 79(10): 917-923.

An SK, Gam HJ, Cao H. Evaluating thermal and sensorial performance of organic cotton, bamboo-blended and soybean-blended fabrics. CTRJ 2013; 31(13): 157-166.

Gorji M, Bagherzadeh R. Moisture management behaviour of high wicking fabrics composed of profiled fibres. Indian J Fibre Text Res. 2016; 41: 318-324.

Su C-I, Fang J-X, Chen X-H. Moisture absorption and release of profiled polyester and cotton composite knitted fabrics. Text Res J. 2007; 77(10): 764-769.

Hussain S, Glombikova V, Akhtar N, Mazari A, Mansoor T, Khan KAH. Liquid moisture transport properties of functional underwear: Part 1. Autex Res J. 2019; 19(2): 1-7.

Zhu C, Takatera M. Effects of hydrophobic yarns on liquid migration in woven fabrics. Text Res J. 2015; 85(5): 479-486.

Sharabaty T, Biguenet F, Dupuis D, Viallier P. Investigation on moisture transport through polyester/cotton fabrics. Indian J Fibre Text Res. 2008; 33: 419-425.

Jhanji Y, Gupta D, Kothari VK. Moisture management properties of plated knit structures with varying fiber types. J Text Inst. 2015; 106(6): 663-673.

Chandrasekaran V, Senthilkumar P, Sakthivel JC. Study on moisture management properties of micro-pore ring-spun viscose yarn-plated knitted fabrics. J Text Inst. 2018; 109(11): 1458-1464.

Stankovic BS, Novakovic M, Popovic MD, Poparic BG, Bizjak M. Novel engineering approach to optimization of thermal comfort properties of hemp containing textiles. J Text Inst. 2019; 110(9): 1271-1279.

Kocic A, Bizjak M, Popovic D, Poparic BG, Stankovic BS. UV protection afforded by textile fabrics made of natural and regenerated cellulose fibres. J Clean Prod. 2019; 228:1229-1237.

Stankovic BS, Bizjak M. Effect of yarn folding on comfort properties of hemp knitted fabrics. CTRJ 2014; 32(3): 202-214.

Pavlovic S, Stankovic S, Popovic D, Poparic G. Transient thermal response of textile fabrics made of natural and regenerated cellulose fibres. Polym Test. 2014; 37: 97-102.

Stankovic S, Popovic D, Poparic G. Thermal properties of textile fabrics made of natural and regenerated cellulose fibres. Polym Test. 2008; 27: 41-48.

Van der Werf HMG. Life cycle analysis of filed production of fibre hemp, the effect of production practices on environmental impacts. Euphytica 2004; 140: 13-23.

Fuzek JF. Absorption and desorption of water by some common fibers. Ind. Eng. Chem. Prod. Res. Dev. 1985; 24: 140-144.

Steele R. Factors affecting the drying of apparel fabrics. Part I: Drying behavior. Text Res J. 1958; 28(2): 136-144.

Cil MG, Nergis UB, Candan C. An experimental study of some comfort-related propertiesof cotton-acrylic knitted fabrics. Text Res J. 2009; 79(10): 917-923.

Ozturuk MK, Nergis B, Candan C. A study of wicking properties of cotton-acrylic yarns and knitted fabrics. Text Res J. 2011; 81(3): 324-328.

Hwang MS, Ji DS. The effect of yarn number and liquid ammonia treatment on the physical properties of hemp woven fabrics. Fibers and Polymers 2012; 13(10):1335-1340.

Novakovic M, Putic L, Bizjak M, Stankovic S. Sposobnost upravljanja vlagom glatkih pletenina izradjenih od prirodnih i regenerisanih celuloznih vlakana. Hem Ind. 2015; 69(2): 193-200. (in Serbian)

Lee JJ, Ji DS. Evaluation of liquid moisture management properties on hemp woven fabrics treated with liquid ammonia. Text Res J. 2017; 87(14): 1752-1764.

Yanilmaz M, Kalaogly F. Investigation of wicking, wetting and drying properties of acrylic knitted fabrics. Text Res J. 2012; 82(8): 820-831.

Miller B, Clark DB. Liquid transport through fabrics, wetting, and steady state flow. Part I: A new experimental approach. Text Res J. 1978; 48: 150-155.

Sampath MB, Prakash C, Senthil Kumar m. Influence of laundering on comfort characteristics of moisture management finished microdenier polyester knitted fabrics. Fibers and Polymers 2019; 20(3): 668-674.

Kyatuheire S, Wei L, Mwasiagi JI. Investigation of moisture transportation properties of knitted fabrics made from viscose vortex spun yarns. J Eng Fiber Fabric 2014; 9(3): 151-157.

Duru SC, Candan C. Effect of repeated laundering on wicking and drying properties of fabrics of seamless garments. Text Res J. 2013; 83(6): 591-605.

McKinney M, Broome ER. The effects of laundering on the performance of open-end and ring-spun yarns in jersey knit fabrics. Text Res J. 1977; 47: 155-162.

Wehner JA, Miller B, Rebenfeld L. Moisture induced changes in fabric structure as evidenced by air permeability measurement. Text Res J. 1987; 57(5): 247-255.

Baltazar-y-Jimenez A, Bismarck A. Wetting behaviour, moisture up-take and electrokinetic properties of lignocellulosic fibres. Cellulose 2007; 14:115-127.

Fan J, Tsang H. Effect of clothing thermal properties on the thermal comfort sensation during active sports. Text Res J. 2008; 78(2): 111-118.

Umeno T, Hokoi S, Takada S. Prediction of skin and clothing temperatures under thermal transient considering moisture accumulation in clothing. ASHRAE Transaction 2001; 107:71-81.

Yang, Y, Weijing Z, Zhang P. Evaluation method for the hygroscopic and cooling function of knitted fabrics. Text Res J. 2019; 89(23-24): 5024-5040.

Boughattas A, Benltoufa S, Hes L, Azeem M, Fayala F. Thermo-physiological properties of woven structures in wet state. Industria Textila 2018; 69(4): 298-303.

Boguslawska-Baczek M, Hes L. Thermophysiological properties of dry and wet functional sportswear made of synthetic fibres. Tekstilec 2017; 60(4): 331-338.

Mangat MM, Hes L, Bajzik V. Thermal resistance models of selected fabrics in wet state and their experimental verification. Text Res J. 2015; 85(2): 200-210.

Hes L, de Araujo M. Simulation of the effect of air gaps between the skin and a wet fabric on resulting cooling flow. Text Res J. 2010; 80(14): 1488-1497.

Haghi AK. Moisture permeation of clothing – a factor governing thermal equilibrium and comfort. J Therm Anal Cal. 2004; 76:1035-1055.

Ren YJ, Ruckman JE. Water vapour transfer in wet waterproof breathable fabrics. J Ind Text. 2003; 32(3):165-175.

Schneider AM, Hoschke BN, Heat transfer through moist fabrics. Text Res J. 1992; 62(2): 61-166.

Cao H, Branson DH, Peksoz S, Nam J, Farr CA. Fabric selection for a liquid cooling garment. Text Res J. 2006; 76(7): 587-595.

EN ISO 5084: Determination of thickness of textiles and textile products. 1996

Lasic V. Vezovi i pletiva. Zagreb, Croatia: V.L.; 1998.

Quaynor L, Nakajima M, Takahashi M. Dimensional changes in knitted silk and cotton fabrics with laundering. Text Res J. 1999; 69(4): 285-291.

Allan Heap S, Greenwood PF, Leah RD, Eaton JT, Stevens JC, Keher P. Prediction of finished weight and shrinkage of cotton knits – the Starfish project. Part I: Introduction and general overview. Text Res J. 1983; 53(2): 109-119.

Stanković S. Kompresibilnost pletenina podvrgnutih testu nege i nošenja. Hem Ind. 2006; 60(5-6): 129-137. (in Serbian)

Benltoufa S, Fayala F, BenNasrallah S. Capillary rise in macro and micro pores of jersey knitting structure. J Eng Fiber Fabric 2008; 3(3): 47-54.

Birrfelder P, Dorrestijn M, Roth C, Rossi R.M. Effect of fiber count and knit structure on intra- and inter-yarn transport of liquid water. Text Res J. 2013; 83(14): 1477-1488.

Similar Articles

You may also start an advanced similarity search for this article.