Analiza robusnosti tehnoloških jedinica bistrenja vode za piće: uobičajeni i vanredni uslovi rada

Main Article Content

Slobodanka Zorić
Milena Bečelić-Tomin
Božo Dalmacija

Abstract

Primarni cilj sistema vodosnabdijevanja je zaštita zdravlja ljudi obezbjeđivanjem mikrobiološki i hemijski ispravne vode za piće. Značajne promjene u kvalitetu vode izvorišta zahtjevaju dovoljno robusne sisteme pripreme vode za piće čije su performanse neosjetljive na date varijacije i promjenjive radne uslove. Mutnoća vode predstavlja važan parametar u kontroli filtracije vode i obezbjeđivanju efikasnosti dezinfekcije. U ovom radu ispitana je efikasnost uklanjanja mutnoće vode u fabrici vode za piće "Vodovod" u Banjaluci u toku uobičajenih uslova rada, kada je maksimalna detektovana vrijednost iznosila 25 NTU i vanrednih uslova rada u toku kojih je mutnoća vode dostizala vrijednost >240 NTU. Procjena robusnosti sistema bistrenja vode izvršena je pojedinačno za period uobičajenih i vanrednih uslova rada (u toku i nakon pražnjenja akumulacije). Za izračunavanje indeksa robusnosti korišćena je stroža ciljna vrijednost kvaliteta filtrirane vode (0,5 NTU) u odnosu na onu koja se zahtjeva aktuelnim zakonodavstvom, što u postojećoj praksi predstavlja novi kriterijum u analizi rizika. Rezultati obrade podataka ukazali su na visoku stabilnost rada tehnoloških jedinica u uobičajenim uslovima. Ustanovljen je značajan uticaj operativnih uslova fabrike na mutnoću filtrirane vode u vanrednim uslovima rada čija bi se optimizacija mogla izvršiti uz prethodan adekvatan monitoring izvorišta vode. Na taj način bi se smanjio potencijalni rizik od pojave patogena u vodi za piće.

Article Details

Section

Chemical Engineering - Simulation and Optimization

Author Biography

Slobodanka Zorić, "Vodovod" Banja Luka,Republika Srpska

"Vodovod" Banja Luka, Odsijek za proizvodnju i distribuciju vode

Glavni tehnolog

How to Cite

[1]
S. Zorić, M. Bečelić-Tomin, and B. Dalmacija, “Analiza robusnosti tehnoloških jedinica bistrenja vode za piće: uobičajeni i vanredni uslovi rada”, Hem Ind, vol. 74, no. 2, pp. 91–102, May 2020, doi: 10.2298/HEMIND190909009Z.

References

Chang EE, Chiang PC, Huang SM, Lin YL. Development and implementation of performance evaluation system for a water treatment plant: case study of Taipei Water Treatment Plant. Pract Period Hazard, Toxic, Radioact Waste Manag. 2007; 11(1): 36-47.

Truffer B, Bratrich C, Markard Ј, Peter A, Wüest A, Wherli B. Green Hydropower: The contribution of aquatic science research to the promotion of sustainable electricity. Aquat Sci. 2003; 65(2): 99-110.

Bunea F, Bucur DM, Dumitran GE, Ciocan GD. Water Quality in Hydroelectric Sites. In: Kostas V, ed. Ecological Water Quality – Water Treatment and Reuse. IntechOpen. 2012; 391-408.

Weston NB, Dixon RE, Joye SB. Ramifications of increased salinity in tidal freshwater sediments: Geochemistry and microbial pathways of organic matter mineralization. J Geophys Res. 2006; 111: G01009(14).

Wang XY, Feng J. Assessment of the Effectiveness of Environmental Dredging in South Lake, China. Environ Manage. 2007; 40:314–322.

Hurst AM, Edwards MJ, Chipps M, Jefferson B, Parsons SA. The impact of rainstorm events on coagulation and clarifier performance in potable water treatment. Sci Total Environ. 2004; 321, 219-230.

Kapić I, Karaselimović S. Neka praktična iskustva prečišćavanja vode u vanrednim uslovima. Zaštita i unapređenje čovjekove sredine. 1984; 2: 35 – 40 (in Serbian)

Zhang K, Achari G, Sadiq R, Langford CH, Dore MHI. An integrated performance assessment framework for water treatment plants. Water Res. 2012; 46, 1673-1683.

Upton A, Jefferson B, Moore G, Jarvis P. Rapid gravity filtration operational performance assessment and diagnosis for preventative maintenance from on-line data. Chem Eng J. 2017; 313, 250-260.

Hamouda MA, Anderson WB, Van Dyke MI, Douglas IP, McFadyen SD, Huck PM. Scenario-based quantitative microbial risk assessment to evaluate the robustness of a drinking water treatment plant. Water Qual Res J Can. 2016; 51.2, 81-96.

Hartshorn AJ, Prpich G, Upton A, Macadam J, Jefferson B, Jarvis P. Assessing filter robustness at drinking water treatment plants. Water Environ J. 2015; 29, 16-26.

WHO. Support to the revision of Annex I Council Directive 98/83/EC on the Quality of Water Intended for Human Consumption (Drinking Water Directive). Drinking Water Parameter Cooperation Project. 2017.

Dalmacija B, Agbaba J, Klašnja M. Mikrobiološki aspekti primene i efikasnost dezinfekcije vode za piće. U: Dalmacija B, Agbaba J, Klašnja M, ur. Dezinfekcija vode. PMF, Departman za hemiju, Novi Sad; 2005; 2: 88-104. (in Serbian).

Logsdon G, Hess A, Chipps MJ, Rachwal A. Filter Maintenance and Operations Guidance Manual. Denver Colo. American Water Works Association. 2002.

Zakarian A, Knight J, Baghadasaryan L. Modelling and Analysis of System Robustness. J Eng Design. 2007; 18(3),243-263.

WHO. Water Safety Plans-Managing drinking-water quality from catchment to consumer. 2005.

Huck PM, Coffey BM. The Importance of Robustness in Drinking-Water Systems. J Toxicol Environ Health. 2004; 67, 20-22, 1581-1590.

Uredba o klasifikaciji i kategorizaciji vodotoka. Službeni glasnik RS broj 42/01. Banja Luka, 2001. (in Serbian)

APHA, AWWA and WPCF. Standard Method for Examination of Water and Wastewater. 20 edition, American Public Health Association, Washington D.C. 1998.

USEPA. ICR Microbiology Laboratory Manual. Office of Research and Development, Washingto D.C. 1996.

Đukić Z. Uticaj pražnjenja akumulacije "Jajce II" na kvalitet vode Banjalučkog vodovoda. U: Upravljanje sistemima, savremena oprema, tehnička rešenja i tehnička regulativa u oblasti vodovoda i kanalizacije. Jahorina, BiH, 2007 (in Serbian).

Wang H, Shen Z, Guo X, Niu J, Kang B. Ammonia adsorption and nitritation in sediments derived from the Three Gorges Reservoir, China. Environ Earth Sci. 2010; 60:1653– 1660.

Morehouse J. Small Water Treatment Plants in Small Water System Operation and Maintenance. 3rd ed., California State University, Sacramento. 1990.

Bogner M, Stanojević M. O vodama. ETA, Beograd. 2006. (in Serbian).

Pravilnik o higijenskoj ispravnosti vode za piće. Službeni glasnik RS br.40/03, Banja Luka, 2003. (in Serbian).

Bratby J. Coagulants, in Coagulation and Flocculation in Water and Wastewater Treatment. 2nd ed., London, IWA Publishing. 2006.

Martyn CN, Barker DJP, Osmond C, Harris EC, Edwardson JA, Lacey RF. Geographical relation between Alzheimer's disease and aluminium in drinking water. Lancet. 1989; 1, 59-62.

Letterman RD, Pero RW. Contaminants in polyelectrolytes used in water treatment. J AWWA. 1990; 82, 87-97.

Dalmacija B, Ivančev-Tumbas I. Koagulacija i flokulacija. U: Dalmacija B, Ivančev-Tumbas I, ur. Prirodne organske materije u vodi. PMF, Departman za hemiju, Novi Sad; 2002; 3: 101-115. (in Serbian).

Similar Articles

You may also start an advanced similarity search for this article.