Electrofreezing of the phase-change material CaCl2·6H2O and its impact on supercooling and the nucleation time

Main Article Content

Inge Magdalena Sutjahja
Annisa Rahman
Risky Afandi Putri
Ahmad Swandi
Radhiah Anggraini
Surjani Wonorahardjo
Daniel Kurnia
Surjamanto Wonorahardjo

Abstract

This paper reports electrofreezing experiments on the inorganic phase-change material (PCM) CaCl2·6H2O by using an insulated copper electrode that is commonly sold in the market. The effect of the applied voltage or electric field to the nucleation process is measured by the nucleation temperature, freezing temperature, supercooling degree, induction time, time for supercooling, and time for crystallisation. It is found that, compared to the zero field, the freezing temperature remains nearly constant while the nucleation temperature increases with increasing applied field, leading to a reduction in the supercooling degree. The decrease in the supercooling degree is approximately 6 K for an applied voltage of V = 5.0 kV or E = 107 V m-1. With the increase in the applied field the induction time decreased considerably along with reduction of the measured data spread as compared to the no-voltage case, while the crystallisation time for the phase transformation prolonged. The overall phenomena are analysed in terms of modification of the Gibbs free energy for crystallisation owing to the applied field, with the mechanism involving bubble generation and formation of a copper-chloride complex.

Article Details

Section

Chemical Engineering - Thermodynamics

Author Biography

Inge Magdalena Sutjahja, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung. Jl. Ganesha No. 10, Bandung 40132

Department of Physics

How to Cite

[1]
I. M. Sutjahja, “Electrofreezing of the phase-change material CaCl2·6H2O and its impact on supercooling and the nucleation time”, Hem Ind, vol. 73, no. 6, pp. 363–374, Dec. 2019, doi: 10.2298/HEMIND190803034S.

References

Dinçer I, Rosen MA. Energy Storage System and Applications. Ontario, Canada: John Wiley & Sons, Ltd.; 2010.

Bruno F, Belusko M, Liu M, Tay NHS. Using solid-liquid phase change materials (PCMs) in thermal energy storage systems. In: Cabeza LF, ed. Advances in Thermal Energy Storage Systems, Methods and Applications. Cambridge: Woodhead; 2015: 201-246.

Fleischer AS. Thermal Energy Storage Using Phase Change Materials Fundamentals and Applications. Berlin: Springer; 2015.

Sharma A, Kar SK (Eds.). Energy sustainability through green energy. Thermal energy storage (part IV). India: Springer; 2015.

Sutjahja IM, Silalahi AO, Kurnia D, Wonorahardjo S. Thermophysical Parameters and Enthalpy Temperature Curve of Phase Change Material with Supercooling from T-History Data. U.P.B. Sci Bull Series B. 2018; 80(2): 57-70.

Hasan A, McCormack SJ, Huang MJ, Norton B. Characterization of phase change materials for thermal control of photovoltaics using differential scanning calorimetry and temperature history method. Energy Convers Manag. 2014; 81: 322-329.

Mehling H, Cabeza L. Heat and Cold Storage with PCM. Berlin: Springer; 2008.

Tyagi VV, Kaushik SC, Pandey AK, Tyagi SK. Experimental study of supercooling and PH behavior of a typical phase change material for thermal energy storage. Indian Journal of Pure and Applied Physics. 2011; 49: 117-125.

Nikolić R, Tripković J. Measurements of thermal conductivities of some low melting materials in a concentric cylinder apparatus. Appl Phys A. 1987; 44: 293-297.

Zhang Y, Zhou G, Lin K, Zhang Q, Di H. Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook. Build Environ. 2007; 42: 2197-209.

Sandnes B, Rekstad J. Supercooling salt hydrates: stored enthalpy as a function of temperature. Sol Energy. 2006; 80: 616-625.

Beaupere N, Soupremanien U, Zalewski L. Nucleation triggering methods in supercooled phase change materials (PCM), a review. Thermochim Acta. 2018; 670: 184-201.

Lane GA. Phase change materials for energy storage nucleation to prevent supercooling. Sol Energy Mater Sol Cells. 1992: 27: 135-160.

Sutjahja IM, Silalahi AO, Sukmawati N, Kurnia D, Wonorahardjo S. Variation of thermophysical parameters of PCM CaCl2.6H2O with dopant from T-history data analysis, Variation of thermophysical parameters of PCM CaCl2·6H2O with dopant from T-history data analysis. Mater Res Express. 2018; 5: 034007(1-8).

Abbas MA, Lantham J. The electrofreezing of supercooled water droplets. J Meteorol Soc Jpn. 1969; 47(2): 65-74.

Pruppacher HR. Electrofreezing of supercooled water. Pure Appl Geophys. 1973; 104(1): 623-634.

Acharya PV, Bahadur V. Fundamental interfacial mechanisms underlying electrofreezing. Adv Colloid Interface Sci. 2018; 251: 26-43.

Isfahan MD, Hamdami N, Xanthakis E, Le-Bail A. Review on the control of ice nucleation by ultrasound waves, electric and magnetic fields. J Food Eng. 2017; 195: 222-234.

Jha PK, Xanthakis E, Jury V, Le-Bail A. An Overview on Magnetic Field and Electric Field Interactions with Ice Crystallisation; Application in the Case of Frozen Food. Crystals. 2017; 7: 299(1-20).

Jankowski NR, McCluskey FP. Electrical Supercooling Mitigation in Erythritol.In: Proceedings of the International Heat Transfer Conference IHTC14. Washington DC, USA, 2010.

Kumano H, Hirata T, Mitsuishi K, Ueno K. Experimental study on effect of electric field on hydrate nucleation in supercooled tetra-n-butyl ammonium bromide aqueous solution. Int J Refrig. 2012; 35: 1266-1274.

Kumano H, GotoH, Toyama Y, KawakitaM. Study on TBAB hydrate nucleating activity of electrode products due to DC voltage application. Int J Refrig. 2018; 93: 10-17.

Carpenter K, Bahadur V. Electronucleation for Rapid and Controlled Formation of Hydrates. J Phys Chem Lett. 2016; 7(13): 2465-2469.

Shahriari A, Acharya PV, Carpenter K, Bahadur V. Metal-Foam-Based Ultrafast Electronucleation of Hydrates at Low Voltages. Langmuir. 2017; 33(23): 5652-5656.

Muthukumar P, Lakshmi DVN. Nucleation Enhancement Studies on Aqueous Salt Solutions, Energy Procedia. 2017; 109: 174-180.

Yurov VM, Guchenko SA, Gyngazova MS. Effect of an electric field on nucleation and growth of crystals. IOP Conf. Ser: Mater Sci Eng. 2016; 110: 012019(1-6).

Aber JE, Arnold S, Garetz BA, Myerson AS. Strong dc Electric Field Applied to Supersaturated Aqueous Glycine Solution Induces Nucleation of the Polymorph. Phys Rev Lett. 2005; 94: 145503(1-4).

Hernández DR, Suárez EAD, Torres ME, Sabalisck NSP. Influence of Electric Fields over the Nucleation Ratio of the Lithium – Potassium Sulphate and its Pedagogical Value. In: II Jornadas Iberoamaricanas de Innovación Educativaen el ámbito de las TIC. Las Palmas de Gran Canaria, 2015, pp. 167-170.

Joshaqani SF, Hamdami N, Keshavarzi E, Keramat J, Isfahan MD. Evaluation of the static electric field effects on freezing parameters of some food systems, Int J Refrig. 2019; 99: 30-36.

Hozumi T, Saito A, Okawa S, Watanabe K. Effects of electrode materials on freezing of supercooled water in electric freeze control. Int J Refrig. 2003; 26: 537-542.

Hozumi T, Saito A, Okawa S, Eshita Y. Effects of shapes of electrodes on freezing of supercooled water in electric freeze control. Int J Refrig. 2005; 28: 389-395.

Shichiri T, Araki Y. Nucleation mechanism of ice crystals under electrical effect. J Cryst Growth. 1986; 78(3): 502-508.

Piucco RO, Hermes CJL, Jader CM, Barbosa Jr R. A study of frost nucleation on flat surfaces. Exp Therm Fluid Sci. 2008; 32: 1710-1715.

Shichiri T, Nagata T. Effect of Electric currents on the nucleation of ice crystals in the melt. J Cryst Growth. 1981; 54: 207-210.

Stan CA, Tang SK, Bishop KJ, Whitesides GM. Externally Applied Electric Fields up to 1.6105 V/m Do Not Affect the Homogeneous Nucleation of Ice in Supercooled Water. J Phys Chem B. 2010; 115(5): 1089-1097.

Yahong M, Lisheng Z, Huiyu H, Qinxue Y, Yewen Z. A micro electro-freezing chip used in the crystallization of aqueous solutions under AC electric field. In: IEEE 10th International Conference on the Properties and Applications of Dielectric Materials (ICPADM). Bangalore, India, 2012, pp. 46-49.

Wei S, Xiaobin X, Hong Z, Chuanxiang X. Effects of dipole polarization of water molecules on ice formation under an electrostatic field. Cryobiology. 2008; 56(1): 93-99.

Orlowska M, Havet M, Le-Bail A. Controlled ice nucleation under high voltage DC electrostatic field conditions. Food Res Int. 2009; 42: 879-884.

Ma Y, Zhong L, Zhang H, Xu C. Effect of Applied Electric Field on the Formation and Structure of Ice in Biomaterials during Freezing. In: 10th IEEE International Conference on Solid dielectrics (ICSD). Potsdam, Germany, 2010, pp. 762-765.

Yang F, Shaw RA, Gurganus CW, Chong SK, Yap YK. Ice nucleation at the contact line triggered by transient electrowetting fields. Appl Phys Lett. 2015; 107(26): 264101.

Carpenter K, Bahadur V. Electrofreezing of Water Droplets under Electrowetting Fields. Langmuir. 2015; 31(7): 2243-2248.

Zhang X, Li X, Chen M. Role of the electric double layer in the ice nucleation of water droplets under an electric field. Atmos Res. 2016; 178: 150-154.

Chalmers B. Principles of Solidification. New York: Wiley; 1964.

Mullin JW. Crystallization. 4th ed., Woburn, MA: Reed Educational and Professional Publishing Ltd.; 2001.

Maris HJ. Introduction to the physics of nucleation. C. R. Physique. 2006; 7: 946-958.

Myerson AS. Concluding remarks. Faraday Discuss. 2015; 179: 543-547.

Zhang JS, Lee S, Lee JW. Kinetics of methane hydrate formation from SDS solution. Ind Eng Chem Res. 2007; 46(19): 6353-6359.

Kashchiev D, Firoozabadi A. Induction time in crystallization of gas hydrates. J Cryst Growth. 2003; 250: 499-515.

Hong H, Kimb SK, Kim YS. Accuracy improvement of T-history method for measuring heat of fusion of various materials. Int J Refrig. 2004; 27: 360-366.

Young SW. Mechanical Stimulus to Crystallization in Supercooled Liquids. J Am Chem Soc. 1911; 33: 148-162.

Günther E. Sononucleation of Inorganic Phase Change Materials, Technische Universität Munchen, 2009.

Palittin ID, Kurniati N, Sutjahja IM, Kurnia D. Sonocrystallization Technique to Optimizing the Crystallization Process of PCM CaCl2·6H2O. Adv Mater Res. 2015; 1112: 559-562.

Tanimizu M, Takahashi Y, Nomura M. Spectroscopic study on the anion exchange behaviour of Cu chloro-complexes in HCl solutions and its implication to Cu isotopic fractionation. Geochem J. 2007; 41: 291-295.

Vogel AI. Vogels Textbook of Macro and Semimicro Qualitative Inorganic Analysis. 5th ed., SvehlaG (Ed.), New York, NY: Longman Group Limited; 1979.

Agyenim F, Hewitt N, Eames P, Smyth M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev. 2010; 14: 615-628.

StritihU, ButalaV. Experimental investigation of energy saving in buildings with PCM cold storage. Int J Refrig.2010; 33: 1676-1683.

Wonorahardjo S, Sutjahja IM, Kurnia D, Fahmi Z, Putri WA. Potential of Thermal Energy Storage Using Coconut Oil for Air Temperature Control. Buildings. 2018; 8: 95(1-16).

Wonorahardjo S, Sutjahja IM, Damiati SA, Kurnia D. Adjustment of indoor temperature using internal thermal massunder different tropical weather conditions, Science and Technology for the Built Environment, https://doi.org/10.1080/2374-4731.2019.1608126

Castell A, Martorell I, Medrano M, Pe´rez G, Cabeza LF. Experimental study of using PCM in brick constructive solutions for passive cooling. Energy Build. 2010; 42: 534-540.

Evola G, Marletta L, Sicurella F. A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings. Build Environ. 2013; 59: 517-527.

Álvarez S, Cabeza LF, Ruiz-Pardo A, Castell A, Tenorio JA. Building integration of PCM for natural cooling of buildings, Appl Energy. 2013; 109: 514-522.

Wonorahardjo S, Sutjahja IM, Mardiyati Y, Andoni H, Dixon T, Achsani RA, Steven S. Characterising thermal behaviour of buildings and its effect on urban heat island in tropical areas, International Journal of Energy and Environmental Engineering, https://doi.org/10.1007/s40095-019-00317-0

Japan International Cooperation Agency (JICA). Development of Evaluation Method on Energy Efficiency and Conservation Policy (MACC); Final Report; JICA: Tokyo, Japan, 2015.

Wonorahardjo S, Sutjahja IM. Bangunan Gedung Hijau untuk Daerah Tropis (Teori, Konsep, dan Penerapan). ITB Press, 2018.

Schuessler R. Energy Poverty Indicators: Conceptual Issues Part I: The Ten-Percent-Rule and Double Median/Mean Indicators, Discussion Paper No. 14-037.

Davis A, Padley M. The Minimum Income Standard, Loughborough University (2017).

UNDP, Sustainable Development Goals, https://www.undp.org/content/dam/undp/library/corpo¬rate/brochure/SDGs_Book-let_Web_En.pdf

Similar Articles

You may also start an advanced similarity search for this article.