Stabilizacija magnetnih čestica polianilinom i imobilizacija alfa-amilaze

Main Article Content

Mirjana N. Radovanović
Milan P. Nikolić
Vesna M. Đurović
Branimir Z. Jugović
Milica M. Gvozdenović
Branimir N. Grgur
Zorica D. Knežević-Jugović

Abstract

U ovom radu sintetisane su magnetne čestice metodom koprecipitacije, a zatim je izvršena polimerizacija anilina na njihovoj površini. Dobijene čestice upotrebljene su kao nosač za imobilizaciju α-amilaze iz Bacillus licheniformis. FTIR spektroskopskom analizom pokazane supromene spektara magnetnih česticausled stvaranja polianilinske prevlake i imobilizacije α-amilaze na magnetnim česticama sa i bez polimernog sloja. Kod magnetnih čestica je prisutna bimodalna, a kod magnetnih čestica sa polianilinskom prevlakom trimodalna raspodela veličine čestica. Merenjem zeta potencijala magnetnih čestica sa i bez polianilina utvrđeno je da dolazi do stabilizacije čestica nakon stvaranja polianilinske prevlake. Obla­ganje magnetnih čestica polianilinom doprinelo je i poboljšanju kinetičkih svojstava imo­bilisanog enzima, jer jeMihaelisova konstantahidrolize skroba, Km imobilisane α-amilaze na magnetnim česticama 1,91 g L-1 i imobilisane α-amilaze na magnetnim česticama presvu­čenim polianilinom 1,48 g L-1. Adsorpcija enzima na magnetnim česticama presvučenim polianilinomdoprinela je pH i temperaturnoj stabilizaciji α-amilaze. U protočnom reaktoru sa pakovanim slojem sa povratnim tokom u prvom ciklusu već nakon 20 min hidrolizovalo je 98,8% skroba, dok je tokom petog ciklusa bio potreban približno pet puta duži vremenski period da hidrolizuje 93,5% skroba. U kontinualnim uslovima rada reaktora stepen hidro­lize skroba se nije menjao značajnije u toku 4 h i iznosio je 88,8±1,6%, a vreme polu-života biokatalizatora bilo je 6,2 h.

Article Details

How to Cite
[1]
M. N. Radovanović, “Stabilizacija magnetnih čestica polianilinom i imobilizacija alfa-amilaze”, Hem Ind, vol. 72, no. 1, pp. 1–12, Jan. 2018, doi: 10.2298/HEMIND161213016R.
Section
Biochemical Engineering - General

How to Cite

[1]
M. N. Radovanović, “Stabilizacija magnetnih čestica polianilinom i imobilizacija alfa-amilaze”, Hem Ind, vol. 72, no. 1, pp. 1–12, Jan. 2018, doi: 10.2298/HEMIND161213016R.

References

Liu Q, Kong X, Zhang C, Chen Y, Hua Y. Immobilisation of ahydroperoxide lyase and comparative enzymological studies ofthe immobilised enzyme with membrane-bound enzyme.J. Sci. Food Agric. 2013; 93: 1953-1959.

Kawaguti HY, Carvalho PH, Figueira JA, Sato HH. Immobilization of Erwinia sp. D12 cells in alginate-gelatin matrixand conversion of sucrose into isomaltulose using responsesurface methodology. Enzyme Res. 2011; 1: 1–8.

Güleç HA. Immobilization of β-galactosidase from Kluyveromyces lactis onto polymeric membrane surfaces: effect of surface characteristics. Colloids Surf., B. 2013; 104: 83–90.

Bayramoglu G, Gursel I, Yilmaz M, Arica MY. Immobilization of laccase on itaconic acid grafted and Cu(II) ion chelated chitosan membrane for bioremediation of hazardous materials. J. Chem. Technol. Biotechnol.2012; 87: 530–539.

Wu H, Wang J, Kang X, Wang C, Wang D, Liu J, Aksay IA, Lin Y. Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film.Talanta.2009; 80: 403-406.

Hartono SB, Qiao SZ, Liu J, Jack K, Ladewig BP, Hao Z, Lu GQM.Functionalized mesoporous silica with very large pores for cellulase immobilization.J. Phys. Chem. 2010; 83: 8353–8362.

Mendes AA, Freitas L, de Carvalho AKF, de Oliviera PC, de Castro HF. Immobilization of a commercial lipase fromPenicillium camembertii (Lipase G) by different strategies. Enzyme Res. 2011;2011: 1–8.

Tran DT, Chen CL, Chang JS. Immobilization of Brukholderiasp. lipase on a ferric nanocomposite for biodiesel production. J. Biotech. 2012; 158: 112–119.

Daly SM, Przybycien TM, Tilton RD. Adsorption of poly(ethylene glycol)-modified ribonuclease A to a poly(lactide-co-glycolide) surface. Biotechnol. Bioeng. 2005; 90: 856-868.

Pai SS, Przybycien TM, Tilton RD. Protein PEGylation attenuates adsorption and aggregation on a negatively charged and moderately hydrophobic polymer surface. Langmuir. 2010; 26: 18231-18238.

Rusmini F, Zhong Z, Feijen J. Protein immobilization strategies for protein biochips. Biomacromolecules. 2007; 8: 1775-1789.

Kalkan NA, Aksoy S, Aksoy EA, Hasirci N. Preparation of chitosan-coated magnetite nanoparticles and application for immobilization of laccase. J. Appl. Polym. Sci. 2012; 123: 707–716.

Kuroiwa T, Noguchi Y, Nakajima N, Sato S, Mukataka S, Ichikawa S. Production of chitosan oligosaccharides using chitosanase immobilized on amylose-coated magnetic nanoparticlesProcess Biochem. 2008; 43: 62-69.

KonyushenkoEN,StejskalJ,TrchováM,Hradil J,Kovářová J,Prokeš J,Cieslar M,Hwang JY, Chen KH, Sapurina I. Multi-wall carbon nanotubes coated with polyaniline. Polymer. 2006; 47: 5715-5723.

Wang S, Bao H, Yang P, Chen G. Immobilization of trypsin in polyaniline-coated nano-Fe3O4/carbon nanotube composite for protein digestion. Anal. Chim. Acta. 2008; 612: 182–189.

Sohrabi N, Rasouli N, Torkzadeh M. Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles Chem. Eng. J. 2014; 240: 426–433.

Kuo CH, Liu YC, Chang CMJ,Chen JH, Chang C, Shieh CJ. Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydr. Polym. 2012; 87: 2538– 2545.

Pessela BCC, Betancor L, Lopez-Gallego F, Torres R, Dellamora-Ortiz GM,Alonso-Morales N, Fuentes M, Fernandez-Lafuente R, Guisan JM, Mateo C. Increasing the binding strength of proteins to PEI coated by immobilization at high ionic strength. Enzyme Microb. Technol. 2005; 37: 295-299.

Zhou W, Yu Y, Chen H, Di Salvo FJ, Abruña HD. Yolk–Shell Structure of Polyaniline-Coated Sulfur for Lithium–Sulfur Batteries.J. Am. Chem. Soc. 2013; 135 (44): 6736–16743.

Maciel JC, Mercês AAD, Cabrera M,Shigeyosi WT, Souza SD, Olzon-Dionysio M, Fabris JD, Cardoso CA,Neri DFM,Silva MPC ,Carvalho LB Jr. Magnetic nanoparticles coated with polyaniline to stabilize immobilized trypsin. Hyperfine interact. 2016; 237 (3): 3

Gupta R,1, Gigras P,Mohapatra H, Goswami VK, Chauhan B. Microbial α-amylases: a biotechnological perspective. Process Biochem. 2003; 38: 1599-1616

Khan MJ, Husain Q, Azam A. Immobilization of Porcine Pancreatic α-amylase on Magnetic Fe2O3 Nanoparticles: Applications to the Hydrolysis of Starch. Biotechnol. Bioprocess Eng. 2012; 17: 377-384.

Hosseinipour SL, Khiabani MS, Hamishehkar H, Salehi R. Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles for potential application in food industries. J. Nanopart. Res. 2015;17: 382.

Tuzmen N,Kalburcu T, Denizli A. α-Amylase immobilization onto dye attached magnetic beads: Optimization andcharacterization. J. Mol. Catal. B: Enzym. 2012; 78: 16– 23.

Radovanović M, Jugović B, Gvozdenović M, Jokić B, Grgur B, Bugarski B, Knežević-Jugović Z. Immobilization of α-amylase via adsorption on magnetic particles coated with polyaniline. Starch- Stärke. 2016; 68: 427-435.

Neri DFM, Balcão VM, Dourado FOQ, Oliveira JMB Carvalho JB Jr, Teixeira JA. Immobilized β-galactosidase onto magnetic particles coated with polyaniline: Support characterizationand galactooligosaccharides production. J. Mol. Catal. B Enzym. 2011; 70, 74–80.

GvozdenovićM, Jugović B, Bezbradica D, Antov M, Knežević-Jugović Z, Grgur B. Electrochemical determination of glucose using polyaniline electrode modified by glucose oxidase. Food Chem. 2011; 124: 396–400.

Bezbradica D, Jugović B,Gvozdenović M, Jakovetić S, Knežević-Jugović Z. Electrochemically synthesized polyaniline as support for lipase immobilization. J. Mol. Catal. B Enzym.2011; 70: 55–60.

Yoo YJ, Hong J, Hatch RT. Comparison of α-amylase activities from different assay methods. Biotechnol.Bioeng.1987; 30: 147–151.

Raita M, Arnthong J, Champreda V, Laosiripojana N. Modification of magnetic nanoparticle lipase designs for biodiesel production from palm oil. Fuel Process. Technol. 2015;134: 189–197.

Jiang J, Li L, Zhu M. Polyaniline/magnetic ferrite nanocomposites obtained by in situ polymerization. React. Funct. Polym. 2008; 68: 57–62.

Rana S, Jadhav NV, Barick KC, Pandeyb BN, Hassan PA. Polyaniline shell cross-linked Fe3O4 magnetic nanoparticles for heat activated killing of cancer cells. Dalton Trans. 2014; 43: 12263-12271.

Wang J, Meng G, Tao K, Feng M, Zhao X. Immobilization of Lipases on Alkyl Silane Modified Magnetic Nanoparticles: Effect of Alkyl Chain Length on Enzyme Activity. PLoS ONE. 2012; 7(8): e43478. doi:10.1371/journal.pone.0043478

Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci. 2002; 6: 319–327.

Temoc Z. Immobilization of α-amylase on reactive modified fiber and its application for continuous starch hydrolysis in a packed bed bioreactor. Starch / Stärke.2014; 66: 376–384.

Baysal Z, Bulut Y, Yavuz M, Aytekin C. Immobilization of α-amylase via adsorption onto bentonite/chitosan composite: Determination of equilibrium, kinetics and thermodynamic parameters. Starch /Stärke.2014; 66: 484–490.

Singh V, Rakshit K, Rathee S, Angmo S, Kaushal S, Garg P ,Chung JH , Sandhir R, Sangwan RS , Singhal N. Metallic/bimetallic magnetic nanoparticle functionalization for immobilization of α-amylase for enhanced reusability in bio-catalytic processes. Bioresour. Technol. 2016; 214, 528-533.

Uygun DA, Ӧztürk N, Agköl S, Denizli A. Novel Magnetic Nanoparticles for the Hydrolysis of Starch with Bacillus licheniformis α-Amylase. J. Appl. Polym. Sci. 2012; 123, 2574-2581.

AksoyS, Tümtürk H, Hasirci N. Stability of α-amylase immobilized on poly(methyl methacrylate-acrylic acid) microsheres. J. Biotechnol.1998; 60: 37-46.

Tümtürk H, AksoyS, Hasirci N. Covalent Immobilization of α-Amylase onto Poly(methyl methacrylate-2-hydroxyethyl methacrylate) Microspheres and the Effect of Ca2+ Ions on the Enzyme Activity. Starch/Stärke.1999; 51: 211-217.

Tümtürk H, Çaykara T, Kantoğlu O, Güven O. Adsorption of α-amylase onto poly(N-vinyl 2-pyrrolidone/itaconic acid) hydrogels. Nucl. Instrum. Methods Phys. Res., Sect. B. 1999; 151: 238-241.

Tümtürk H, Çaykara T, Şen M, Güven O. Adsorption of α-amylase onto poly(acrylamide/maleic acid) hydrogels. Radiat. Physic Chem. 1999; 55: 713-716.

Hasirci N, Aksoy S, Tümtürk H. Activation of poly(dimer acid-co-alkyl polyamine) particles for covalent immobilization of α-amylase. React.Funct.Polym.. 2006; 66: 1546–1551.

Antony N, Balachandran S, Mohanan PV. Immobilization of diastase α-amylase on nano zinc oxide.Food Chem. 2016; 211: 624–630.

Ashly PC, Joseph MJ, Mohanan PV. Activity of diastase α-amylase immobilized on polyanilines (PANIs). Food Chem. 2011; 127: 1808-1813.

Most read articles by the same author(s)