Stabilizacija magnetnih čestica polianilinom i imobilizacija alfa-amilaze
Main Article Content
Abstract
U ovom radu sintetisane su magnetne čestice metodom koprecipitacije, a zatim je izvršena polimerizacija anilina na njihovoj površini. Dobijene čestice upotrebljene su kao nosač za imobilizaciju α-amilaze iz Bacillus licheniformis. FTIR spektroskopskom analizom pokazane supromene spektara magnetnih česticausled stvaranja polianilinske prevlake i imobilizacije α-amilaze na magnetnim česticama sa i bez polimernog sloja. Kod magnetnih čestica je prisutna bimodalna, a kod magnetnih čestica sa polianilinskom prevlakom trimodalna raspodela veličine čestica. Merenjem zeta potencijala magnetnih čestica sa i bez polianilina utvrđeno je da dolazi do stabilizacije čestica nakon stvaranja polianilinske prevlake. Oblaganje magnetnih čestica polianilinom doprinelo je i poboljšanju kinetičkih svojstava imobilisanog enzima, jer jeMihaelisova konstantahidrolize skroba, Km imobilisane α-amilaze na magnetnim česticama 1,91 g L-1 i imobilisane α-amilaze na magnetnim česticama presvučenim polianilinom 1,48 g L-1. Adsorpcija enzima na magnetnim česticama presvučenim polianilinomdoprinela je pH i temperaturnoj stabilizaciji α-amilaze. U protočnom reaktoru sa pakovanim slojem sa povratnim tokom u prvom ciklusu već nakon 20 min hidrolizovalo je 98,8% skroba, dok je tokom petog ciklusa bio potreban približno pet puta duži vremenski period da hidrolizuje 93,5% skroba. U kontinualnim uslovima rada reaktora stepen hidrolize skroba se nije menjao značajnije u toku 4 h i iznosio je 88,8±1,6%, a vreme polu-života biokatalizatora bilo je 6,2 h.
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
How to Cite
References
Liu Q, Kong X, Zhang C, Chen Y, Hua Y. Immobilisation of ahydroperoxide lyase and comparative enzymological studies ofthe immobilised enzyme with membrane-bound enzyme.J. Sci. Food Agric. 2013; 93: 1953-1959.
Kawaguti HY, Carvalho PH, Figueira JA, Sato HH. Immobilization of Erwinia sp. D12 cells in alginate-gelatin matrixand conversion of sucrose into isomaltulose using responsesurface methodology. Enzyme Res. 2011; 1: 1–8.
Güleç HA. Immobilization of β-galactosidase from Kluyveromyces lactis onto polymeric membrane surfaces: effect of surface characteristics. Colloids Surf., B. 2013; 104: 83–90.
Bayramoglu G, Gursel I, Yilmaz M, Arica MY. Immobilization of laccase on itaconic acid grafted and Cu(II) ion chelated chitosan membrane for bioremediation of hazardous materials. J. Chem. Technol. Biotechnol.2012; 87: 530–539.
Wu H, Wang J, Kang X, Wang C, Wang D, Liu J, Aksay IA, Lin Y. Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film.Talanta.2009; 80: 403-406.
Hartono SB, Qiao SZ, Liu J, Jack K, Ladewig BP, Hao Z, Lu GQM.Functionalized mesoporous silica with very large pores for cellulase immobilization.J. Phys. Chem. 2010; 83: 8353–8362.
Mendes AA, Freitas L, de Carvalho AKF, de Oliviera PC, de Castro HF. Immobilization of a commercial lipase fromPenicillium camembertii (Lipase G) by different strategies. Enzyme Res. 2011;2011: 1–8.
Tran DT, Chen CL, Chang JS. Immobilization of Brukholderiasp. lipase on a ferric nanocomposite for biodiesel production. J. Biotech. 2012; 158: 112–119.
Daly SM, Przybycien TM, Tilton RD. Adsorption of poly(ethylene glycol)-modified ribonuclease A to a poly(lactide-co-glycolide) surface. Biotechnol. Bioeng. 2005; 90: 856-868.
Pai SS, Przybycien TM, Tilton RD. Protein PEGylation attenuates adsorption and aggregation on a negatively charged and moderately hydrophobic polymer surface. Langmuir. 2010; 26: 18231-18238.
Rusmini F, Zhong Z, Feijen J. Protein immobilization strategies for protein biochips. Biomacromolecules. 2007; 8: 1775-1789.
Kalkan NA, Aksoy S, Aksoy EA, Hasirci N. Preparation of chitosan-coated magnetite nanoparticles and application for immobilization of laccase. J. Appl. Polym. Sci. 2012; 123: 707–716.
Kuroiwa T, Noguchi Y, Nakajima N, Sato S, Mukataka S, Ichikawa S. Production of chitosan oligosaccharides using chitosanase immobilized on amylose-coated magnetic nanoparticlesProcess Biochem. 2008; 43: 62-69.
KonyushenkoEN,StejskalJ,TrchováM,Hradil J,Kovářová J,Prokeš J,Cieslar M,Hwang JY, Chen KH, Sapurina I. Multi-wall carbon nanotubes coated with polyaniline. Polymer. 2006; 47: 5715-5723.
Wang S, Bao H, Yang P, Chen G. Immobilization of trypsin in polyaniline-coated nano-Fe3O4/carbon nanotube composite for protein digestion. Anal. Chim. Acta. 2008; 612: 182–189.
Sohrabi N, Rasouli N, Torkzadeh M. Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles Chem. Eng. J. 2014; 240: 426–433.
Kuo CH, Liu YC, Chang CMJ,Chen JH, Chang C, Shieh CJ. Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydr. Polym. 2012; 87: 2538– 2545.
Pessela BCC, Betancor L, Lopez-Gallego F, Torres R, Dellamora-Ortiz GM,Alonso-Morales N, Fuentes M, Fernandez-Lafuente R, Guisan JM, Mateo C. Increasing the binding strength of proteins to PEI coated by immobilization at high ionic strength. Enzyme Microb. Technol. 2005; 37: 295-299.
Zhou W, Yu Y, Chen H, Di Salvo FJ, Abruña HD. Yolk–Shell Structure of Polyaniline-Coated Sulfur for Lithium–Sulfur Batteries.J. Am. Chem. Soc. 2013; 135 (44): 6736–16743.
Maciel JC, Mercês AAD, Cabrera M,Shigeyosi WT, Souza SD, Olzon-Dionysio M, Fabris JD, Cardoso CA,Neri DFM,Silva MPC ,Carvalho LB Jr. Magnetic nanoparticles coated with polyaniline to stabilize immobilized trypsin. Hyperfine interact. 2016; 237 (3): 3
Gupta R,1, Gigras P,Mohapatra H, Goswami VK, Chauhan B. Microbial α-amylases: a biotechnological perspective. Process Biochem. 2003; 38: 1599-1616
Khan MJ, Husain Q, Azam A. Immobilization of Porcine Pancreatic α-amylase on Magnetic Fe2O3 Nanoparticles: Applications to the Hydrolysis of Starch. Biotechnol. Bioprocess Eng. 2012; 17: 377-384.
Hosseinipour SL, Khiabani MS, Hamishehkar H, Salehi R. Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles for potential application in food industries. J. Nanopart. Res. 2015;17: 382.
Tuzmen N,Kalburcu T, Denizli A. α-Amylase immobilization onto dye attached magnetic beads: Optimization andcharacterization. J. Mol. Catal. B: Enzym. 2012; 78: 16– 23.
Radovanović M, Jugović B, Gvozdenović M, Jokić B, Grgur B, Bugarski B, Knežević-Jugović Z. Immobilization of α-amylase via adsorption on magnetic particles coated with polyaniline. Starch- Stärke. 2016; 68: 427-435.
Neri DFM, Balcão VM, Dourado FOQ, Oliveira JMB Carvalho JB Jr, Teixeira JA. Immobilized β-galactosidase onto magnetic particles coated with polyaniline: Support characterizationand galactooligosaccharides production. J. Mol. Catal. B Enzym. 2011; 70, 74–80.
GvozdenovićM, Jugović B, Bezbradica D, Antov M, Knežević-Jugović Z, Grgur B. Electrochemical determination of glucose using polyaniline electrode modified by glucose oxidase. Food Chem. 2011; 124: 396–400.
Bezbradica D, Jugović B,Gvozdenović M, Jakovetić S, Knežević-Jugović Z. Electrochemically synthesized polyaniline as support for lipase immobilization. J. Mol. Catal. B Enzym.2011; 70: 55–60.
Yoo YJ, Hong J, Hatch RT. Comparison of α-amylase activities from different assay methods. Biotechnol.Bioeng.1987; 30: 147–151.
Raita M, Arnthong J, Champreda V, Laosiripojana N. Modification of magnetic nanoparticle lipase designs for biodiesel production from palm oil. Fuel Process. Technol. 2015;134: 189–197.
Jiang J, Li L, Zhu M. Polyaniline/magnetic ferrite nanocomposites obtained by in situ polymerization. React. Funct. Polym. 2008; 68: 57–62.
Rana S, Jadhav NV, Barick KC, Pandeyb BN, Hassan PA. Polyaniline shell cross-linked Fe3O4 magnetic nanoparticles for heat activated killing of cancer cells. Dalton Trans. 2014; 43: 12263-12271.
Wang J, Meng G, Tao K, Feng M, Zhao X. Immobilization of Lipases on Alkyl Silane Modified Magnetic Nanoparticles: Effect of Alkyl Chain Length on Enzyme Activity. PLoS ONE. 2012; 7(8): e43478. doi:10.1371/journal.pone.0043478
Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci. 2002; 6: 319–327.
Temoc Z. Immobilization of α-amylase on reactive modified fiber and its application for continuous starch hydrolysis in a packed bed bioreactor. Starch / Stärke.2014; 66: 376–384.
Baysal Z, Bulut Y, Yavuz M, Aytekin C. Immobilization of α-amylase via adsorption onto bentonite/chitosan composite: Determination of equilibrium, kinetics and thermodynamic parameters. Starch /Stärke.2014; 66: 484–490.
Singh V, Rakshit K, Rathee S, Angmo S, Kaushal S, Garg P ,Chung JH , Sandhir R, Sangwan RS , Singhal N. Metallic/bimetallic magnetic nanoparticle functionalization for immobilization of α-amylase for enhanced reusability in bio-catalytic processes. Bioresour. Technol. 2016; 214, 528-533.
Uygun DA, Ӧztürk N, Agköl S, Denizli A. Novel Magnetic Nanoparticles for the Hydrolysis of Starch with Bacillus licheniformis α-Amylase. J. Appl. Polym. Sci. 2012; 123, 2574-2581.
AksoyS, Tümtürk H, Hasirci N. Stability of α-amylase immobilized on poly(methyl methacrylate-acrylic acid) microsheres. J. Biotechnol.1998; 60: 37-46.
Tümtürk H, AksoyS, Hasirci N. Covalent Immobilization of α-Amylase onto Poly(methyl methacrylate-2-hydroxyethyl methacrylate) Microspheres and the Effect of Ca2+ Ions on the Enzyme Activity. Starch/Stärke.1999; 51: 211-217.
Tümtürk H, Çaykara T, Kantoğlu O, Güven O. Adsorption of α-amylase onto poly(N-vinyl 2-pyrrolidone/itaconic acid) hydrogels. Nucl. Instrum. Methods Phys. Res., Sect. B. 1999; 151: 238-241.
Tümtürk H, Çaykara T, Şen M, Güven O. Adsorption of α-amylase onto poly(acrylamide/maleic acid) hydrogels. Radiat. Physic Chem. 1999; 55: 713-716.
Hasirci N, Aksoy S, Tümtürk H. Activation of poly(dimer acid-co-alkyl polyamine) particles for covalent immobilization of α-amylase. React.Funct.Polym.. 2006; 66: 1546–1551.
Antony N, Balachandran S, Mohanan PV. Immobilization of diastase α-amylase on nano zinc oxide.Food Chem. 2016; 211: 624–630.
Ashly PC, Joseph MJ, Mohanan PV. Activity of diastase α-amylase immobilized on polyanilines (PANIs). Food Chem. 2011; 127: 1808-1813.