Dizajn, sinteza i evaluacija farmakokinetički relevantnih svojstava novih spirohidantoina izvedenih iz β-tetralona
Main Article Content
Abstract
U cilju kreiranja novih antikonvulzivnih lekova, sintetisana je serija spirohidantoina izvedenih iz β-tetralona koji u položaju 3 hidantoinskog prstena sadrže 4-supstituisanu benzil-grupu (1a−1g) ili 2-(4-supstituisanu fenil)-2-oksoetil-grupu (2a−2f). Hemijska struktura novosintetisanih molekula potvrđena je određivanjem temperature topljenja, kao i primenom infracrvene spektroskopije sa Furijeovom transformacijom, protonske nuklearne magnetne rezonancije, nuklearne magnetne rezonancije ugljenika-13, UV-vidljive spektroskopije i elementarne analize. Efekat supstituenata na pomeranje apsorpcionih maksimuma jedinjenja 1a−1g i 2a−2f analiziran je Hametovom (Hammett) jednačinom. Uticaj hemijske strukture na farmakološke osobine derivata hidantoina procenjen je primenom "pravila broja pet", Veberovog (Veber), Eganovog (Egan) i Gozovog (Ghose) empirijskog kriterijuma, kao i primenom različitih in silico metoda. U poređenju sa referentnim lekom fenitoinom, derivati koji u svojoj strukturi sadrže atome halogena ili elektron-donorske grupe, trebalo bi da ispoljavaju najbolju intestinalnu apsorpciju i prolazak kroz krvno-moždanu barijeru. U zavisnosti od prirode supstituenta prisutnog u p-položaju fenilnog jezgra, derivati 1a−1g i 2a−2f mogu da budu potencijalni aktivatori/inhibitori pojedinih izoenzima citohroma P450.
Article Details
Issue
Section
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
How to Cite
References
Konnert L, Gonnet L, Halasz I, Suppo JS, De Figueiredo RM, Campagne JM, Lamaty F, Martinez J, Colacino E. Mechanochemical preparation of 3,5-Disubstituted hydantoins from dipeptides and unsymmetrical ureas of amino acid derivatives. J Org Chem. 2016; 81: 9802–9809.
Monteiro JL, Pieber B, Corrêa AG, Kappe CO. Continuous synthesis of hydantoins: intensifying the Bucherer-Bergs reaction. Synlett. 2016; 27: 83–87.
Konnert L, Lamaty F, Martinez J, Colacino E. Recent advances in the synthesis of hydantoins: the state of the art of a valuable scaffold. Chem Rev. 2017; 117: 13757–13809.
Czopek A, Zagórska A, Kołaczkowski M, Bucki A, Gryzło B, Rychtyk J, Pawłowski M, Siwek A, Satała G, Bojarski A, Kubacka M, Filipek B. New spirohydantoin derivatives-synthesis, pharmacological evaluation, and molecular modeling study. Acta Pol. Pharm. - Drug Res. 2016; 73: 1545–1554.
Fabíola LC, Diogo VF, Antônia RSP, Mirian GSS, Paula RRS, Charlane KSP, Fagner CL, Márcia RP, Severino AS, Petrônio FAF, Liana CMP, Reinaldo NA. Involvement of proinflammatory cytokines and nociceptive pathways on the pharmacological activity of hydantoin derivative 5-(4-isopropylphenyl)-3-phenyl-imidazolidine-2,4-dione. African J. Pharm. Pharmacol. 2016; 10: 757–765.
Mendes G, Aspesi GH, Arruda ALA, Romanos MTV, Andrade CKZ. In vitro Anti-HMPV activity of new synthetic phenytoin derivatives. J Braz Chem Soc. 2016; 27: 2–9.
Hussain A, Kashif MK, Naseer MM, Rana UA, Hameed S. Synthesis and in vivo hypoglycemic activity of new imidazolidine-2,4-dione derivatives. Res Chem Intermed. 2015; 41: 7313–7326.
Alanazi AM, El-Azab AS, Al-Swaidan IA, Maarouf AR, El-Bendary ER, Abu El-Enin AM, Abdel-Aziz AAM. Synthesis, single-crystal, in vitro antitumor evaluation and molecular docking of 3-substitued 5,5-diphenylimidazolidine-2,4-dione derivatives. Med Chem Res. 2013; 22: 6129–6142.
Ananda Kumar CS, Kavitha CV, Vinaya K, Prasad SBB, Thimmegowda NR, Chandrappa S, Raghavan SC, Rangappa KS. Synthesis and in vitro cytotoxic evaluation of novel diazaspiro bicyclo hydantoin derivatives in human leukemia cells: a SAR study. Invest New Drugs. 2009; 27: 327–337.
Liu J, Zhang K, Mai X, Wei J, Liao Y, Zhong Y, Liu Y, Feng L, Liu C. Synthesis , anticancer evaluation and docking study of 3-benzyloxyhydantoin derivatives. Med Chem. 2016; 12: 37–47.
Czopek A, Byrtus H, Zagórska A, Siwek A, Kazek G, Bednarski M, Sapa J, Pawłowski M. Design, synthesis, anticonvulsant, and antiarrhythmic properties of novel N-Mannich base and amide derivatives of β-tetralinohydantoin. Pharmacol Reports. 2016; 68: 886–893.
Obniska J, Byrtus H, Kamiński K, Pawłowski M, Szczesio M, Karolak-Wojciechowska J. Design, synthesis, and anticonvulsant activity of new N-Mannich bases derived from spirosuccinimides and spirohydantoins. Bioorganic Med Chem. 2010; 18: 6134–6142.
Scholl S, Koch A, Henning D, Kempter G, Kleinpeter E. The influence of structure and lipophilicity of hydantoin derivatives on anticonvulsant activity. Struct Chem. 1999; 10: 355–366.
Trišović N, Timić T, Divljaković J, Rogan J, Poleti D, Savić MM, Ušćumlić G. Synthesis, structural and biological characterization of 5-phenylhydantoin derivatives as potential anticonvulsant agents, Monatsh Chem. 2012; 143: 1451–1457.
Lazić AM, Božić BĐ, Vitnik VD, Vitnik ŽJ, Rogan JR, Radovanović LD, Valentić NV, Ušćumlić GS. Structure-property relationship of 3-(4-substituted benzyl)-1,3- diazaspiro[4.4]nonane-2,4-diones as new potentional anticonvulsant agents. An experimental and theoretical study. J Mol Struct. 2017; 1127: 88–98.
Vitnik VD, Vitnik ŽJ, Banjac NR, Valentić NV, Ušćumlić GS, Juranić IO. Quantum mechanical and spectroscopic (FT-IR, 13C, 1H NMR and UV) investigations of potent antiepileptic drug 1-(4-chloro-phenyl)-3- phenyl-succinimide. Spectrochim Acta-Part A Mol Biomol Spectrosc. 2014; 117: 42–53.
Milošević NP, Kojić V, Ćurčić J, Jakimov D, Milić N, Banjac N, Ušćumlić G, Kaliszan R. Evaluation of in silico pharmacokinetic properties and in vitro cytotoxic activity of selected newly synthesized N-succinimide derivatives. J Pharm Biomed Anal. 2017; 137: 252–257.
Banjac N, Trišović N, Vitnik Ž, Vitnik V, Valentić N, Ušćumlić G, Juranić I. Solvatochromic and quantum chemical investigations of newly synthesized succinimides: substituent effect on intramolecular charge transfer. Monatsh Chem. 2013; 144: 1525–1535.
Antanasijević D, Antanasijević J, Trišović N, Ušćumlić G, Pocajt V. From classification to regression multitasking QSAR modeling using a novel modular neural network: simultaneous prediction of anticonvulsant activity and neurotoxicity of succinimides. Mol Pharm. 2017; 14; 4476–4484.
Perišić-Janjić N, Kaliszan R, Milošević N, Ušćumlić G, Banjac N. Chromatographic retention parameters in correlation analysis with in silico biological descriptors of a novel series of N-phenyl-3-methyl succinimide derivatives. J Pharm Biomed Anal. 2013; 72: 65–73.
http://www.swissadme.ch/ - pristupljeno 10. 08. 2018.
http://lmmd.ecust.edu.cn./admetsar1/about/ - pristupljeno 10. 08. 2018.
http://www.Openmolecules.org/datawarrior/ - pristupljeno 10. 08. 2018.
http://www.pharmaexpert.ru/passonline/ - pristupljeno 10. 08. 2018.
http://www.compchemcons.com/xlogp/hlogp.html - pristupljeno 10.08.2018
Naydenova E, Pencheva N, Popova J, Stoyanov N, Lazarova M, Aleksiev B. Aminoderivatives of cycloalkanespirohydantoins: synthesis and biological activity. Farmaco. 2002; 57: 189–194.
Suzuki H, Kneller MBB, Rock DA, Jones JP, Trager WF, Rettie AE. Active-site characteristics of CYP2C19 and CYP2C9 probed with hydantoin and barbiturate inhibitors. Arch Biochem Biophys. 2004; 429: 1–15.
Trišović N, Valentić N, Ušćumlić G. Solvent effects on the structure-property relationship of anticonvulsant hydantoin derivatives: a solvatochromic analysis. Chem Cent J. 2011; 5: 1–11.
Lavanya Devi C, Yesudas K, Makarov NS, Jayathirtha Rao V, Bhanuprakash K, Perry JW. Fluorenylethynylpyrene derivatives with strong two-photon absorption: influence of substituents on optical properties. J Mater Chem C. 2015; 3: 3730–3744.
Karelson M, Lobanov VS, Katritzky AR. Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev. 1996; 96: 1027–1044.
Cohen CN. The molecular modeling perspective in drug design In: Guidebook of Molecular Modeling in Drug Design Ed. Cohen CN, San Diego, California, Acad. Press Inc., 1996: pp. 1–17.
Apostolov S, Vaštag Đ. Proučavanje lipofilnosti potencijalno biološki aktivnih derivata cijanoacetamida. J Eng Process Manag. 2017; 1: 1–9.
Lipinski PJ, Lombardo CA, Dominy F, Feeney BW. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development setting. Adv Drug Deliv Rev. 2012; 64: 4–17.
Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002; 45: 2615–2623.
Ghose A, Viswanadhan V, Wendoloski J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for Drug Discovery.1. Qualitative and Quantitative Characterization of Known Drug Databases. J Comb Chem. 1999; 1: 55–68.
Egan W, Merz K, Baldwin J. Prediction of drug absorption using multivariate statistics. J Med Chem. 2000; 43: 3867–3877.
Zerroug A, Belaidi S, BenBrahim I, Sinha L, Chtita S. Virtual screening in drug-likeness and structure-activity relationship of pyridazine derivatives as anti-Alzheimer drugs. J King Saud Univ-Sci. (2018). doi:10.1016/j.jksus.2018.03.024.
Wildman SA, Crippen GM. Prediction of physicochemical parameters by atomic contributions. J Chem Inf Comput Sci. 1999; 39: 868–873.
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001; 46: 3–26.
Wager TT, Chandrasekaran RY, Hou X, Troutman MD, Verhoest PR, Villalobos A, Will Y. Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes. ACS Chem Neurosci. 2010; 1: 420–434.
Wager TT, Hou X, Verhoest PR, Villalobos A. Central Nervous System Multiparameter Optimization Desirability: application in Drug Discovery. ACS Chem Neurosci. 2016; 7: 767–775.
Wager TT, Hou X, P.R. Verhoest, Villalobos A. Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem Neurosci. 2010; 1: 435–449.