Fenton proces za tretman industrijskih otpadnih voda u disperznim sistemima (Pregledni rad)

Main Article Content

Ana Popović
Sonja Milićević
Vladan Milošević
Branislav Ivošević
Jelena Čarapić
Vladimir Jovanović
Dragan Povrenović

Abstract

Otpadna voda industrijskih procesa u sebi sadrži teško razgradiva organska jedinjenja. Ovakva jedinjenja su izgrađena od molekula sa dugim nizom ugljenikovih atoma, uz prisustvo različitih funkcionalih grupa. Uklanjanje ovih jedinjenja iz otpadne vode, tretmanima kao što su hemijski i biološki, u poslednje vreme zamenjuje se nekonvencionalnim metodama, čija je efikasnost daleko veća. Napredni oksidacioni procesi nemaju ograničenja u poređenju sa konvencionalnim metodama, u pogledu nastajanja neželjenih nus-proizvoda pri minerali­zaciji toksičnih zagađujućih supstanci. Fenton proces, ili primena Fentonovog reagensa, izdvojio se od ostalih naprednih oksidacionih procesa kao najprimenjivaniji, zbog svoje jed­nostavnosti, ekonomičnosti i dostupnosti gvožđa i vodonik-peroksida koji se pri ovom procesu koriste. Fentonov reagens je katalitičko-oksidativna smeša jona gvožđa i vodonik-peroksida. Joni gvožđa Fe2+ iniciraju i katalizuju dekompoziciju H2O2 do hidroksil radikala koji ima sposobnost da oksiduje organsku materiju do ugljek-dioksida i vode. Tokom Fenton procesa, osim hidroksil radikala generišu se i druge radikalne vrste koje takođe učestvuju u razgradnji organske materije. Efikasnost Fenton procesa zavisi od fizičkih i hemijskih karak­teristika zagađujuće materije koja podleže tretmanu, kao i operativnih uslova u kojima se proces izvodi. Formiranje mulja, koji čine hidroksidi gvožđa, predstavlja glavni nedostatak ovog procesa. Alternativno rešenje ovog problema, jeste primena Fenton procesa u disperznim sistemima.

Cilj ovog rada je pregled moguće primene Fenton procesa u disperznim sistemima sa akcentom na upotrebi različitih vrsta katalizatora. Kontrolisanjem parametara Fenton procesa u disperznim sistemima, kao što su vrednost pH, temperatura, koncentracija vodonik-peroksida i reakciono vreme, povećava se efikasnost razgradnje složenih organskih materija u otpadnoj vodi. Povećanje efikasnosti ovakvog sistema ima značajnu ulogu za njegovu primenu u komercijalne svrhe.

Article Details

How to Cite
[1]
A. Popović, “Fenton proces za tretman industrijskih otpadnih voda u disperznim sistemima (Pregledni rad)”, Hem Ind, vol. 73, no. 1, pp. 47–62, Mar. 2019, doi: 10.2298/HEMIND181019005P.
Section
Environmental Engineering - Waste Water Treatment
Author Biography

Ana Popović, Institut za tehnologiju nuklearnih i drugih mineralnih sirovina (ITNMS), Beograd

Završila Fakultet tehničkih nauka, smer inženjerstvo zaštite životne sredine, Univerzitet u Novom Sadu, Master na Tehnološko-metalurškom fakultetu U Beogradu, na smeru inženjerstvo zaštite životne sredine. Trenutno na doktorskim studijama na Tehnološko-metalurškom fakultetu U Beogradu, na smeru inženjerstvo zaštite životne sredine.

Zaposlena u Institutu za tehnologiju nuklearnih i drugih mineralnih sirovina (ITNMS), Beograd, gde se bavi tehnologijama prečišćavanja otpadnih voda.

How to Cite

[1]
A. Popović, “Fenton proces za tretman industrijskih otpadnih voda u disperznim sistemima (Pregledni rad)”, Hem Ind, vol. 73, no. 1, pp. 47–62, Mar. 2019, doi: 10.2298/HEMIND181019005P.

References

Directive 2013/39/EU of the European Parlament and of the council, of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy.

Gogate PR, Pandit AB, A review of imperative technologies for waste-water treatment I: oxidation technologies at ambient conditions, Adv Environ Res. 2004; 8: 501-551.

Tchobanoglous G, Burton F, Stensel H, Wastewater engineering. New York: Metcalf & Eddy Inc; 2003.

Mohajerani M, Mehrvar M, Ein-Mozaffari F, An Overview of The Integration of Advanced Oxidation Technologies And Other Processes For Water And Wastewater Treatment, International Journal of Engineering. 2009; 3 (2): 120 – 147.

Shamsuddin AKM, Guang-Yu Yang, Inositol & its Phosphates: Basic Science to Practical Applications, Sharjah: Bentham Science Publishers; 2015.

Cheves W, Fenton's reagent revisited, Acc Chem Res. 1975; 8 (4): 125–131.

Parsons S, and Williams M, Advanced Oxidation Processes for Water and Wastewater Treatment. Parsons S (ed). IWA Publishing, London; 2004.

Yoon J, Lee Y, Kim S, Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment, Water Sci Technol. 2001; 44 (5): 15-21.

Wadley S, Waite TD, Advanced Oxidation Processes for Water and Wastewater Treatmen, IWA Publishing, London; 2006.

Klavarioti M, Mantzavinos D, Casinos D, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environ Int. 2009; 35: 402–417.

Rodríguez R, Espada JJ, Pariente MI, Melero JA, Martínez F, Molina R, Comparative life cycle assessment (LCA) study of heterogeneous and homogenous Fenton processes for the treatment of pharmaceutical wastewater, J Clean Prod. 2016; 124: 21-29.

Tomic S, Knezevic M, Rajic N, Povrenovic D, Removal of magnesium in spring water using the natural zeolite in a continuous flow system, Hem Ind. 2014; 68(4): 475-482.

Tomic S, Rajic N, Hrenovic J, Povrenovic D, Removal of Mg from spring water using natural clinoptilolite, Clay Minerals. 2012; 47 (1): 81-92.

Stanic T, Dakovic A, Zivanovic A, Tomasevic-Canovic M, Dondur V, Milicevic S, Adsorption of arsenic (V) by iron (III)-modified natural zeolitic tuff, Environ Chem Lett. 2009; 7 (2): 161–166.

Milicevic S, Milosevic V, Povrenovic D, Stojanovic J, Martinovic S, Babic B, Removal of heavy metals from aqueous solution using natural and Fe(iii) oxyhydroxide clinoptilolite, Clays Clay Miner. 2014; 61 (6): 508-516.

Milicevic S, Boljanac T, Martinovic S, Vlahovic M, Milosevic V, Babic B, Removal of copper from aqueous solutions by low cost adsorbent-Kolubara lignite, Fuel Process Technol. 2012; 95: 1-7.

Lemic J, Tomacevic-Canovic M, Adamovic M, Kovacevic D, Milicevic S, Competitive adsorption of polycyclic aromatic hydrocarbons on organo-zeolites, Micropor Mesopor Mat. 2007; 105 (3): 317-323.

Matijasevic S, Dakovic A, Iles D, Milicevic S, Adsorption of uranyl ion on acid-modified zeolitic mineral clinoptilolite, Hem Ind. 2009; 63 (5): 407-414.

Milicevic S, Matovic Lj, Petrovic Đ, Đukic A, Milosevic V, Đokic D, Kumric K, Surfactant modification and adsorption properties of clinoptilolite for the removal of pertechnetate from aqueous solutions, J Radioanal Nucl Ch. 2016; 310 (2): 805–815.

Milicevic S, Martinovic S, Milosevic V, Stojanovic J, Povrenovic D, Differences in coating mechanism of structurally different aluminosilicates observed through the thermal analysis, J Therm Anal Calorim. 2018; 1-9.

Hwang CJ, Krasner SW, Sclimenti MJ, Amy GL, Dickenson E, Bruchet A, Prompsy C, Filippi G, Croue JP, Violleau D, LeenheerJA, Polar NOM: Characterization, DBPs, Treatment, AWWA Research Foundation; 2002.

Mendez-Arriaga F, Almanza R, Water remediation by UV–vis/H2O2 process photo-Fenton-like oxidation, and zeolite ZSM5, Desalin Water Treat. 2014; 52: 5822–5832.

Chun J, Lee H, Lee SH, Hong SW, Lee J, Lee C, Lee J, Magnetite/mesocellular carbon foam as a magnetically recoverable fenton catalyst for removal of phenol and arsenic. Chemosphere. 2012; 89: 1230-1237.

Iboukhoulef H, Amrane A, Kadi H, Removal of phenolic compounds from olive mill wastewater by a Fenton-like system H2O2/Cu(II)-thermodynamic and kinetic modelling, Desalin Water Treat. 2014; 1–6.

David H, Bremner Arthur E, Burgess DHK, Cheol N, Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide, Appl Catal B. 2006; 63 (1–2): 15-19.

Bai C, Gong W, Feng D, Xian M, Zhou Qi, Chen S, Zhongxue G, Yanshui Z, Natural graphite tailings as heterogeneous Fenton catalyst for the decolorization of rhodamine B, Chem Eng J. 2012; 197: 306–313.

Samuel QV, Moraisa CSD, Rodriguesa FJ, Maldonado HM, Madeira M, Heterogeneous Fentons oxidation using Fe/ZSM-5 as catalyst in a continuous stirred tank reactor, Sep Purif Technol. 2015; 141: 235-245.

Wu J, Lin G, Li P, Yin W, Wang X, Yang B, Heterogeneous Fenton-like degradation of an azo dye reactive brilliant orange by the combination of activated carbon-FeOOH catalyst and H2O2, Water Sci Technol. 2013; 67 (3): 572-8.

Fumihiko O, Takehiro N, Naohito K, Improvement of the Homogeneous Fenton Reaction for Degradation of Methylene Blue and Acid Orange II, Chem Pharm Bull. 2018; 66 (5): 585-588.

Aleksandar MS, Višefazni disperzni sistemi, 4th ed, Beograd: Institut za tehnologiju nuklearnih i drugih mineralnih sirovina, 1997; 212-216. (in Serbian)

Smith RB, In Encyclopedia of Atmospheric Sciences Edition, 2thed, Yale University, New Haven, CT, USA, 2015.

Janevski J, Stojanović B, Stojiljković M, Minimalna brzina fluidizacije praškastih materijala u dvokomponentnom fluidizovanom sloju, 12. Simpozijum termičara SCG, Sokobanja, 18 - 21. Oktobar 2005. (in Serbian)

Jena HM, Roy GK, Meikap BC, Hydrodynamics of a gaseliquidesolid fluidized bed with hollow cylindrical particles, Chem Eng Process. 2009; 48: 279-287.

Knezevic M, Povrenovic D, Influence of fluid-mechanical characteristics of the system on the volumetric mass transfer coefficient and gas dispersion in three-phase system, Hem Ind. 2014; 68 (4): 483-490.

Knezevic M, Povrenovic D, Influence of fluid-mechanical parameters on volumetric mass transfer coefficient in a spout–fluid bed with a draft tube, Chem Eng Sci. 2015; 134: 129-137.

Nonglak B, Atsawin J, Tuksinaiya P, Jin A, Chalermchai R, Treatability of phenol-production wastewater: Rate constant and pathway of dimethyl phenyl carbinol oxidation by hydroxyl radicals, J Environ Manage. 2017; 204: 613-621.

Isara M, Chavalit R, Ming-Chun L, Removal of 2,4-dichlorophenol by fluidized-bed Fenton process, Sustain Environ Res. 2010; 20(5): 325-331.

Shanshanchou, Chihpinhuandg, Yao-Huihuang, Heterogeneous and Homogeneous Catalytic Oxidation by Supported γ-FeOOH in a Fluidized-Bed Reactor: Kinetic Approach, Environ Sci Technol. 2001; 35: 1247-1251.

Mahdi E, Farshchia H, Aghdasiniaa A, Khataeeb, Modeling of heterogeneous Fenton process for dye degradation in a fluidized-bed reactor: Kinetics and mass transfer, J Clean Prod. 2018; 182: 644-653.

Emmanuela M, Matiraa T-C, Chenb M-C, Luc Maria LPD, Degradation of dimethyl sulfoxide through fluidized-bed Fenton process, J Hazard Mater. 2015; 300: 218-226.

Anotai J, Sakulkittimasak P, Boonrattanakij N, Lu MC, Kinetics of nitrobenzene oxidation and iron crystallization in fluidized-bed Fenton process, J Hazard Mater. 2009; 165 (1-3): 874-80.

Jin A, Chia-Chi S, Yi-Chun T, Ming-Chun L, Effect of hydrogen peroxide on aniline oxidation by electro-Fenton and fluidized-bed Fenton processes, J Hazard Mater. 2010; 183: 888–893.

Jun L, Jun L, Rongwu M, Fuchao W, Balasubramanian S, Treatment of recalcitrant organic silicone wastewater by fluidized-bed Fenton process, Sep Purif Technol. 2014; 132: 16–22.

Jin A, Pumis T, Chia-Chi S, Ming-Chun L, Degradation of o-toluidine by fluidized-bed Fenton process: statistical and kinetic study, Environ Sci Pollut Res. 2012; 19: 169–176.

Chia-Chi S, Chia-Min C, Jin A, Ming-Chun L, Removal of monoethanolamine and phosphate from thin-film transistor liquid crystal display (TFT-LCD) wastewater by the fluidized-bed Fenton process, Chem Eng J. 2013; 222: 128–135.

Chun-Ping H, Yao-Hui H, Application of an active immobilized iron oxide with catalytic H2O2 for the mineralization of phenol in a batch photo-fluidized bed reactor, Appl Catal A. 2009; 357 (2): 135-7.

Yu-Jen S, Meng-Tso T, Yao-Hui H, Mineralization and defluoridation of 2,2,3,3-tetrafluoro-1- propanol (TFP) by UV oxidation in a novel three-phase fluidized bed reactor (3P-FBR), Water Res. 2013; 47: 2325 -2330.

Huiyuan L, Ricky P, Yan W, Hui Z, Yao-Hui H, Mineralization of bisphenol A by photo-Fenton-like process using a waste iron oxide catalyst in a three-phase fluidized bed reactor, J Taiwan Inst Chem Eng. 2015; 53: 68–73.

Hui-Pin C, Yao-Hui H, Changha L, Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron oxide, J Hazard Mater. 2011; 188: 357–362.

Geldart D, Types of fluidization, Powder Technol. 1973; 7: 285-292.

Mustapha Mohammed B, Abdul A, Abdul R, Monash P, Applications of fluidized bed reactors in wastewater treatment - A review of the major design and operational parameters, J Clean Prod. 2017; 141: 1492-1514.

Huang, YH, Shih, YJ, Cheng, FJ, Novel KMnO4-modified iron oxide for effective arsenite removal, J Hazard Mater. 2011; 198: 1-6.

Nannan W, Tong Z, Guangshan Z, Peng W, A review on Fenton-like processes for organic wastewater treatment, J Environ Chem Eng. 2016; 4: 762–787.

Fengxi C, Shenglong X, Xuanlin H, Xinhong Q, Ionothermal synthesis of Fe3O4 magnetic nanoparticles as efficient heterogeneous Fenton-like catalysts for degradation of organic pollutants with H2O2, J Hazard Mater. 2017; 322: 152–162.

Marta IL, Mariel S, An overview on heterogeneous Fenton and photo Fenton reactions using zerovalent iron materials, J Adv Oxid Technol. 2017; 20(1)

Xu XR, Li XY, Li XZ, Li HB, Sep Purif Technol. 2009; 68: 261–266.

Szpyrkowicz L, Juzzolino C, Kaul SN, Water Res.2001; 35: 2129–2136.

Soon AN, Hameed BH, Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process, Desalination. 2011; 269: 1-16.

Rivas FJ, Beltran FJ, Frades J, Buxeda P, Water Res.2001; 35: 387–396.

Hassan A, Alireza K, Mohammad S, Pariya T, Pilot Plant Fluidized-Bed Reactor for Degradation of Basic Blue 3 in Heterogeneous Fenton Process in the Presence of Natural Magnetite, Environ Prog Sustain. 2017; 36 (4): 1944-7442.

Yan W, Ricky P, Hui Z, Yao-Hui H, Degradation of the azo dye Orange G in a fluidized bed reactor using iron oxide as a heterogeneous photo-Fenton catalyst, RSC Advances. 2015; 45276-45283.

Jin A, Naruemol W, Nonglak B, Heterogeneous fluidized-bed Fenton process: Factors affecting iron removal and tertiary treatment application, Chem Eng J. 2018; 352: 247-254.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)