Uticaj kombinovanih aktivnih punila na svojstva elastomernih materijala za ekološki prihvatljive pneumatike
Main Article Content
Abstract
Primenom stiren-butadienskog kaučuka kao prekursora mreže, i kombinacije nanočestica čađi i silicijum(IV)oksida (SiO2),pri različitim phr sadržajima (50/0, 35/15, 25/25, 15/35, 0/50 phr), sintetisani su nanokompoziti sa adekvatnim svojstvima za ekološki prihvatljive pneumatike. Proučavana je raspodela punila u elastomernoj matrici, i ispitan je uticaj kombinovanih punila na karakteristike mešanja, umrežavanje, kao i na termička, dinamičko-mehanička i mehanička svojstva umreženih nanokompozita. Obrazovanje najvećih aglomerata je uočeno u u strukturi nanokompozita ojačanog sa 25 phr čađi i 25 phr sintetisanog silicijum(IV)oksida. Povećanjem sadržaja silicijum(IV)oksida u kombinovanom punilu, rastu vrednosti minimalnog momenta na 100, 150 i 160 °C (u skladu sa sklonošću SiO2 da učestvuje u punilo-punilo interakcijama). Vreme početka umrežavanja i vreme optimalnog umrežavanja se produžavaju dodatkom SiO2. Primenom modulovane diferencijalno skenirajuće kalorimetrije i dinamičko-mehaničke analize je utvrđena temperatura prelaska u staklasto stanje. Kompoziti sa kombinovanim punilima ispunjavaju zahteve u industriji pneumatika, nisku vrednost mehaničkog faktora gubitaka između 40 i 80 °C, radi smanjenja otpornosti na kotrljanje i uštede u potrošnji goriva, uz istovremeno visoki histerezis na niskim temperaturama (od -20 do 0 °C), u cilju postizanja visoke otpornosti na klizanje na ledu i mokrom kolovozu. Utvrđen je i uticaj dodatka kombinovanog punila na zateznu čvrstoću i otpornost na abraziju sintetisanih nanokompozita.
Article Details
Issue
Section
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
How to Cite
References
Chandra AK, Kumar NR. Polymer Nanocomposites for Automobile Engineering Applications. In Properties and Applications of Polymer Nanocomposites. Berlin: Heidelberg, Springer; 2017; 139-172.
Ramarad S, Khalid M, Ratnam CT, Chuah AL, Rashmi W. Waste tire rubber in polymer blends: A review on the evolution, properties and future. Prog in Mater Sci. 2015; 72: 100-140.
Boonmahitthisud A, Chuayjuljit S. Effects of nanosized polystyrene and polystyrene-encapsulated nanosilica on physical properties of natural rubber/styrene butadiene rubber nanocomposites. Polym Plast Technol Eng. 2012; 51: 311-316.
Heinrich G, Klüppel M. Recent advances in the theory of filler networking in elastomers. In Filled elastomers drug delivery systems. Berlin: Heidelberg, Springer, 2002; 1-44.
Lazić NL, Budinski-Simendić J, Petrović ZS, Plavšić MB. Modification of Dynamic Properties of The SBR Rubber Composites with Silica Fillers. Mater Sci Forum. 2006; 518: 417-422.
Allegra M, Raos G, Vacatello M. Theories and simulations of polymer-based nanocomposites: from chain statistics to reinforcement. Prog Polym Sci. 2008; 33: 683-741.
Al-Hartomy OA, Al-Ghamdi AA, Farha Al Said SA, Dishovsky N, Mihaylov M, Ivanov M. Influence of carbon black/silica ratio on the physical and mechanical properties of composites based on epoxidized natural rubber. J Compos Mater. 2016; 50: 377-386.
Waddell WH, Evans LR. Use of nonblack fillers in tire compounds. Rubber chemistry and technology. 1996; 69: 377-423.
Limper A. Mixing of Rubber Compounds. Munich: Carl Hanser Verlag GmbH Co KG; 2012.
Lacayo-Pineda J. Filler Dispersion and Filler Networks. Encyclopedia of polymeric materials. 2014; 771-776.
Kojić D, Lazić N, Pavličević J, Aleksić V, Dugić P, Marković G, Budinski-Simendić J. Strukturiranje ojačanih elastomernih materijala za dobijanje pneumatika. Anali poslovne ekonomije. 2017; 17: 67-74.
Budinski-Simendić J, Milić J, Cvetković I, Radičević R, Korugić-Karasz LJ, Vukov M, Mirković D. Uticaj punila na svojstva elastomernih materijala na bazi poli (etilen-ko-propilen-ko-2-etilen-5-norbornen) kaučuka. Hem Ind. 2006; 60: 321-326.
Atashi H, Shiva M. Formulation for Passenger Tread Tire Compound Based on Styrene Butadiene Rubber/cis-Butadiene Rubber/Natural Rubber Blend and Semi-Dispersible Silica/Carbon Black Filler System. Asian J Chem. 2010; 22: 7519-7530.
Stöckelhuber KW, Svistkov AS, Pelevin AG, Heinrich G. Impact of Filler Surface Modification on Large Scale Mechanics of Styrene Butadiene/Silica Rubber Composite. Macromolecules. 2011; 44: 4366–4381.
Domingues KN, Camesasca M, Kaufman M, Manas-Zloczower I, Gaspar-Cunha A, Covas JA. Modeling of Agglomerate Dispersion in Single Screw Extruders. Int Polym Proc. 2010; 25: 251–257.
Alberola ND, Benzarti K, Bas C, Bomal Y. Interface effects in elastomers reinforced by modified precipitated silica. Polym Composite. 2001; 22: 312-325.
Choi SS, Park BH, Song H. Influence of filler type and content on properties of styrene‐butadiene rubber (SBR) compound reinforced with carbon black or silica. Polym Advan Technol. 2004; 15: 122-127.
Katueangngana K, Tulyapitaka T, Saetunga A, Soontaranonb S, Nithi-uthaia N. Renewable Interfacial Modifier for Silica Filled Natural Rubber Compound. Procedia Chemistry. 2016; 19: 447–454.
Mohamed R, Mohd Nurazzi N, Huzaifah M. Effect of carbon black composition with sludge palm oil on the curing characteristic and mechanical properties of natural rubber/styrene butadiene rubber compound. IOP Conf. Series: Materials Science and Engineering. 2017; 223: 012008
Marković G, Dević S, Marinović-Cincović M, Budinski-Simendić J. Influence of carbon black on reinforcement and gamma-radiation resistance of EPDM/CSM CR/CSM rubber blends. Kgt Kaut Gummi Kunst. 2009; 62: 299–305.
Ooi ZX, Ismail H, Bakar AA. Optimisation of oil palm ash as reinforcement in natural rubber vulcanisation: a comparison between silica and carbon black fillers. Polym Test. 2013; 32: 625-630.
Bijarimi M, Zulkafli H, Beg MDH. Mechanical Properties of Industrial Tyre Rubber Compounds. Journal of Applied Sciences. 2010; 10: 1345-1348.
Ulfah IM, Fidyaningsih R, Rahayu S, Fitriani DA, Saputra DA, Winarto DA, Wisojodharmo LA. Influence of Carbon Black and Silica Filler on the Rheological and Mechanical Properties of Natural Rubber Compound. Procedia Chemistry. 2015; 16: 258-264.
Tadiello L, D'Arienzo M, Di Credico B, Hanel T, Matejka L, Mauri M, Morazzoni F, Špirkova M, Scotti R. The filler-rubber interface in styrene butadiene nanocomposites with anisotropic silica particles: morphology and dynamic properties. Soft Matter. 2015; 11: 4022-4033.
Sarkawi SS, Kaewsakul W, Sahakaro K, Dierkes WK, Noordermeer JWM. A Review on Reinforcement of Natural Rubber by Silica Fillers for Use in Low-Rolling Resistance Tyres. Jl of Rubber Res. 2005; 18: 203-233.
Lazić NL, Budinski-Simendić J, Ostojić S, Kićanović M, Plavšić MB. Effects of Nano-Structure of Silica on Dynamic Properties of Styrene-Butadiene Rubber. Mater Sci Forum. 2017; 555: 473-478.
Ten Brinke JW, Debnath SC, Reuvekamp LA, Noordermeer JW. Mechanistic aspects of the role of coupling agents in silica–rubber composites. Compos Sci and Technol. 2003; 63: 1165-1174.
Rattanasom N, Saowapark T, Deeprasertkul C. Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Test. 2007; 26: 369-377.
Zafarmehrabian R, Gangali ST, Reza Ghoreishy MH, Davallu M. The Effects of Silica/Carbon Black Ratio on the Dynamic Properties of the Tread compounds in Truck Tires. E-J Chem. 2012; 9: 1102-1112.
Saeoui P, Suchiva K, Sirisinha C, Intiya W, Yodjun P, Thepsuwan U. Effects of Blend Ratio and SBR Type on Properties of Carbon Black-Filled and Silica-Filled SBR/BR Tire Tread Compounds. Adv Mater Sci Eng. 2017; Article ID 2476101: 8 pages https://doi.org/10.1155/2017/2476101
Alberola ND, Benzarti K, Bas C, Bomal Y. Interface effects in elastomers reinforced by modified precipitated silica. Polym Composite. 2001; 22: 312-325.
Mark JE, Erman B, Eirich FR. The Science and Technology of Rubber. 3rd Ed. Burlington, USA: Elsevier Academic Press; 2005.
Baeza GP, Genix A, Degrandcourt C, Petitjean L, Gummel J, Couty M, Oberdisse J. Multiscale Filler Structure in Simplified Industrial Nanocomposite Silica/SBR Systems Studied by SAXS and TEM. Macromolecules. 2013; 46: 317–329.
Musić S, Filipović-Vinceković N, Sekovanić L. Precipitation of amorphous SiO2 particles and their properties. Braz J Chem Eng. 2011; 46: 89-94.
ISO DIS 4652-2: Rubber compounding ingredients - determination of surface area - part 2: determination of multipoint nitrogen surface area (nsa) and statistical thickness surface area (stsa). 2002.
ASTM D3765-04: Standard Test Method for Carbon Black—CTAB (Cetyltrimethylammonium Bromide) Surface Area. 2004.
ISO 5794.1: Rubber compounding ingredients -- Silica, precipitated, hydrated -- Part 1: Non-rubber tests. 2005.
ISO 2781: Rubber, vulcanizedor thermoplastic - Determination of densit. 2008.
ASTM D2228-04: Standard Test Method for Rubber Property—Relative Abrasion Resistance by Pico Abrader Method. 2015.
SRPS G.S2.735: Fizikalna ispitivanja gume i plastičnih masa: Ispitivanje otpora prema cepanju gume, folija iz plastičnih masa i elastičnih penastih proizvoda. 1970.
Wang MJ, Kutsovsky Y, Zhang P, Mehos G, Murphy L J, Mahmud K. Using carbon-silica dual phase filler-Improve global compromise between rolling resistance, wear resistance and wet skid resistance for tires. Kgt Kaut Gummi Kunst. 2002; 55: 33-40.
Murthy SSN. Liquid–liquid transition in polymers and glass‐forming liquids. Article in Journal of Polymer Science Part B Polymer Physics. 1993; 31: 475 – 480.
Flanigan CM, Beyer L, Klekamp D, Rohweder D, Stuck B, Terrill ER. Comparative study of silica, carbon black and novel fillers in tread compounds. Rubber World. 2013; 245: 18-31.
Al-Hartomy OA, Al-Ghamdi AA, Said SFA, Dishovsky N, Mihaylov M, Malinova P. Comparative study of the dynamic properties of natural rubber based composites, containing carbon-silica dual phase fillers obtained by different methods. J Chem Technol Metall. 2015; 50: 567-576.
Choi SS. Improvement of properties of silica‐filled natural rubber compounds using polychloroprene. J Appl Polym Sci. 2002; 83: 2609-2616.