The evaluation of temperature and pH influences on equilibrium swelling of poly(N-isopropylacrylamide-co-acrylic acid) hydrogels

Aleksandar S. Zdravković, Ljubiša B. Nikolić, Snežana S. Ilić-Stojanović, Vesna D. Nikolić, Saša R. Savić, Agneš J. Kapor

Abstract


Hydrogels are synthesized by the method of radical polymerization of monomers: N-iso­propylacrylamide (NIPAM) and acrylic acid (AA). Characterization of poly(N-isopropyl­acryl­amide-co-acrylic acid) hydrogels, p(NIPAM/AA), has been performed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and by determination of the swelling behaviour in aqueous solutions at different temperatures (25, 31 and 37 °C) and pH values (2.2, 4.5, 6 and 6.8). After lyophilisation in the solution at pH 6 and temperature of 25 °C, p(NIPAM/AA) hydrogels have rapidly reached equilibrium degree of swelling, αe, in com­parison to non-lyophilized samples. The mechanism of solvent transport within matrix in lyophilized samples corresponds to less Fickian diffusion, whereas Super case II diffusion is characteristic for non-lyophilized samples. p(NIPAM/AA) hydrogel with 1.5 mol% of ethyl­ene glycol dimethacrylate (EGDM) at the temperature of 25 °C and pH 6.8, has reached the highest swelling equilibrium degree, αe = 259.8. The results of swelling studies have shown that p(NIPAM/AA) hydrogels can be classified as superabsorbent polymers (SAPs). For the evaluation of pH and temperature influences on synthesized hydrogels swelling, a full three-level experimental design has been used. Two-factor interaction model (2FI) is the most optimal model of a full three-level experimental design for representing the swelling equilibrium degree of p(NIPAM/AA) hydrogels as a function of investigated parameters, i.e., temperature and pH.


Keywords


hydrogel, swelling, FTIR, XRD, experimental design

Full Text:

PDF (1,439 kB)

References


N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations, Eur. J. Pharm. Biopharm. 50 (2000) 27–46.

A.S. Hoffman, Hydrogels for biomedical applications, Adv. Drug Deliv. Rev. 54 (2002) 3–12.

Y. Zheng, A. Wang, Superadsorbent with three-dim-ensional networks: From bulk hydrogel to granular hydrogel, Eur. Polym. J. 72 (2015) 661–686.

M.J. Zohuriaan-Mehr, K. Kabiri, Superabsorbent polymer materials: A Review, Iran. Polym. J. 17 (2008) 451–477.

N.A. Peppas, Physiologically responsive gels, J. Bioact. Compat. Polym. 6 (1991) 241–246.

N.A. Peppas, S.R. Lustig, in: N.A. Peppas (Eds.), Hyd-rogels in medicine and pharmacy, Vol. 1, CRC Press, Boca Raton, FL, 1986, pp. 57–84.

A. Kikuchi, T. Okano, in: T. Okano (Eds.), Biorelated polymers and gels, Academic Press, Boston, MA, 1998, pp. 1–28.

A. Gutowska, Y.H. Bae, J. Feijan, S.W. Kim, Heparin release from thermosensitive hydrogels, J. Control. Rel-ease 22 (1992) 95–104.

E.S. Gil, S.M. Hudson, Stimulireponsive polymers and their bioconjugates, Prog. Polym. Sci. 29 (2004) 1173–1222.

B. Jeong, A. Gutowska, Lessons from nature: stimuli responsive polymers and their biomedical applications, Trends Biotechnol. 20 (2002) 305–311.

R. Mohsen, B.D. Alexander, S.C.W. Richardson, J.C. Mitchell, A.A. Diab, M.J. Snowden, Design, synthesis, characterization and toxicity studies of poly(N-isopropyl-acrylamide-co-lucifer yellow) particles for drug delivery applications, J. Nanomed. Nanotechnol. 7 (2016) 363–372.

H. Almeida, M.H. Amaral, P. Lobão, Temperature and pH stimuli-responsive polymers and their applications in controlled and self-regulated drug delivery, J. Appl. Polym. Sci. 2 (2012) 1–10.

B. Vernon, S.W. Kim, Y.H. Bae, Thermoreversible copolymer gels for extracellular matrix, J. Biomed. Mater. Res. 51 (2000) 69–79.

X. Lin, D. Tang, Z. Yu, Q. Feng, Stimuli-responsive electrospun nanofibers from poly(N-isopropylacryl-amide)-co-poly(acrylic acid) copolymer and polyurethane, J. Mater. Chem., B 2 (2014) 651–658.

J.J. Chen, A.L. Ahmad, B.S. Ooi, Poly(N-isopropyl¬acryl-amide-co-acrylic acid) hydrogels for copper ion adsorption: Equilibrium isotherms, kinetic and thermodynamic studies, J. Environ. Chem. Eng. 1 (2013) 339–348.

S. Champ, W. Xue, M.B. Huglin, Concentrating aqueous solutions of water soluble polymers by thermoreversible swelling of poly[(N-isopropylacrylamide)-co-(acrylic acid)] hydrogels, Macromol. Chem. Phys. 201 (2000) 931–940.

W. Cai, E.C. Anderson, R.B. Gupta, Separation of lignin from aqueous mixtures by ionic and nonionic temperature-sensitive hydrogels, Ind. Eng. Chem. Res. 40 (2001) 2283–2288.

Y. Pei, J. Chen, L. Yang, L. Shi, Q. Tao, B. Hui, J. Li, The effect of pH on the LCST of poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-acrylic acid), J. Bio-mater. Sci. Polym. Ed. 15 (2004) 585–594.

M. Adimi, H. Attar, A. Barati, A. Seifkordi, M. Bakhtiari, Experimental investigation and modeling of the anti-cancer drug delivery from poly(N-isopropylacrylamide-co-Acrylic acid) copolymeric hydrogels, Int. J. Biosci. 5 (2014) 183–191.

Y.Y. Liu, Y.H. Shao, J. Lü, Preparation, properties and controlled release behaviors of pH-induced thermosensitive amphiphilic gels, Biomaterials 27 (2006) 4016–4024.

X.Z. Zhang, Y.Y. Yang, F.J. Wang, T.S. Chung, Thermosensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with expanded network structures and improved oscillating swelling–deswelling properties, Langmuir 18 (2002) 2013–2018.

C. Alvarez-Lorenzo, A. Concheiro, Reversible adsorption by a pH- and temperature-sensitive acrylic hydrogel, J. Control. Release 80 (2002) 247–257.

J.K. Cho, Z. Meng, L.A. Lyon, V. Breedveld, Tunable attractive and repulsive interactions between pH-responsive microgels, Soft Matter 5 (2009) 3599–3602.

S.R. Tonge, B.J. Tighe, Responsive hydrophobically associating polymers: a review of structure and properties, Adv. Drug Deliv. Rev. 53 (2001) 109–122.

F.L. Buchholz, A.T. Graham, Modern superabsorbent polymer technology, Wiley-VCH, New York, 1998.

H.L.A. El‐Mohdy, A.H. El‐Sayed, H.A.A. El‐Rehim, Characterization of starch/acrylic acid super‐absorbent hydrogels prepared by ionizing radiation, J. Macromol. Sci., Pure Appl. Chem. 43 (2006) 1051–1063.

J. Yu, G. Yang, Y. Li, W. Yang, J. Gao, Q. Lu, Synthesis, characterization, and swelling behaviors of acrylic acid/carboxymethyl cellulose superabsorbent hydrogel by glow–discharge electrolysis plasma, Polym. Eng. Sci. 54 (2014) 2310–2320.

W.A. El–Tohamy, H.M. El–Abagy, E.M. Ahmed, F.S. Aggor, S.I. Hawash, Application of super absorbent hydrogel poly(acrylate/acrylic acid) for water conservation in sandy soil, TESCE 40 (2014) 1–8.

A.A.L. Gonçalves, A.C. Fonseca, I.G.P. Fabela, J.F.J. Coelho, A.C. Serra, Synthesis and characterization of high performance superabsorbent hydrogels using bis[2-(methacryloyloxy)ethyl] phosphate as crosslinker, Exp-ress Polym. Lett. 10 (2016) 248–258.

K. Kabiri, H. Omidian, M.J. Zohuriaan–Mehr, S. Doroudiani, Superabsorbent hydrogel composites and nanocomposites: a review, Polym. Compos. 32 (2011) 277–289.

A.I. Khuri, S. Mukhopadhyay, Response surface methodology, WIREs Comp. Stat. 2 (2010) 128–149.

T. Lundstedt, E. Seifert, L. Abramo, B. Thelin, A. Nyström, J. Pettersen, R. Bergman, Experimental design and optimization, Chemometr. Intell. Lab. 42 (1998) 3–40.

D.C. Montgomery, Design and analysis of experiments, 8th ed., John Wiley & Sons, New Jersey, 2013.

M.Z. Šljivić-Ivanović, I.D. Smičiklas, J.P. Marković, A.S. Milenković, Analiza faktora koji utiču na sorpciju Cu(II) jona klinoptilolitom, Hem. Ind. 67 (2013) 739–745.

M. Kurečič, M. Sfiligoj-Smole, K. Stana-Kleinschek, UV polymerization of poly (N-isopropylacrylamide) hydrogel, Mater. Technol. 46 (2012) 87–91.

A.K. Saikia, S. Aggarwal, U.K. Mandal, Swelling dynamics of poly(NIPAM-co-AMPS) hydrogels synthesized using PEG as macroinitiator: effect of AMPS content, J. Polym. Res. 20 (2013) 1–9.

S.A. Jadhav, V. Brunella, I. Miletto, G, Berlier, D. Scalarone, Synthesis of poly(N-isopropylacrylamide) by distillation precipitation polymerization and quantitative grafting on mesoporous silica, J. Appl. Polym. Sci. (2016), doi: 10.1002/app.44181.

J. Umemura, S. Hayashi, Infrared spectra and molecular configurations of liquid and crystalline acrylic acids, Bull. Inst. Chem. Res. 52 (1974) 585–595.

S.M. Milosavljević, Strukturne instrumentalne metode, Hemijski fakultet, Beograd, 1994 (in Serbian).

Z.H. Farooqi, T. Sakhawat, S.R. Khan, F. Kanwal, M. Usman, R. Begum, Synthesis, characterization and fabrication of copper nanoparticles in N-isopropylacrylamide based co-polymer microgels for degradation of p-nitrophenol, Mater. Sci. – Poland 33 (2015) 185–192.

S. Ilić-Stojanović, L. Nikolić, V. Nikolić, I. Ristić, J. Budinski-Simendić, A. Kapor, G.M. Nikolić, The structure characterization of thermosensitive poly(N-isopropyl-acrylamide-co-2-hydroxypropyl methacrylate) hydrogel, Polym. Int. 63 (2014) 973–981.

H. Kasgoz, Z. Ozbas, E. Esen, C.P. Sahin, G. Gurdag, Removal of copper(II) ions with a thermoresponsive cellulose-g-poly(N-isopropyl acrylamide) copolymer, J. Appl. Polym. Sci. 130 (2013) 4440–4448.

F. Ganji, S. Vasheghani-Farahani, E. Vasheghani-Farahani, Theoretical description of hydrogel swelling: a review, Iran. Polym. J. 19 (2010) 375–398.

R.A. Gemeinhart, C. Guo, in: N. Yui, R.J. Mrsny, K. Park (Eds.), Reflexive polymers and hydrogels: understanding and designing fast responsive polymeric systems, CRC Press, Boca Raton, 2004, pp. 245–257.

A.S. Hoffman, Hydrogels for biomedical applications, Adv. Drug Deliv. Rev. 64 (2012) 18–23.

P.L. Ritger, N.A. Peppas, A simple equation for description of solute release II. Fickian and anomalous release from swellable devices, J. Control. Release 5 (1987) 37–42.

S.K. Bajpai, Swelling–deswelling behavior of poly(acrylamide-co-maleic acid) hydrogels, J. Appl. Polym. Sci. 80 (2001) 2782–2789.

C.H.M. Jacques, H.B. Hopfenberg, V. Stannett, in: H.B. Hopfenberg (Eds.), Permeability of plastic films and coatings to gases, vapors, and liquids, Plenum Press, New York, 1974, pp. 73–86.

P. Mercea, in: O. G. Piringer, A.L. Baner (Eds.), Plastic Packaging: Interactions with Food and Pharmaceuticals, Wiley-VCH, Weinheim, 2008, pp. 123–162.

T. Alfrey, E.F Gurnee, W.G. Lloyd, Diffusion in glassy polymers, J. Polym. Sci., C 12 (1966) 249–261.

J. Wang, W. Wu, Z. Lin, Kinetics and thermodynamics of the water sorption of 2–hydroxyethyl methacrylate/styrene copolymer hydrogels, J. Appl. Polym. Sci. 109 (2008) 3018–3023.

A.K. Bajpai, J. Bajpai, S. Shukla, Water sorption through a semi–interpenetrating polymer network (IPN) with hydrophilic and hydrophobic chains, React. Funct. Polym. 50 (2001) 9–21.

Y. Maeda, H. Yamamoto, I. Ikeda, Effects of ionization on the phase behavior of poly(N-isopropylacrylamide-co-acrylic acid) and poly(N,N-diethylacrylamide-co-acrylic acid) in water, Colloid Polym. Sci. 282 (2004) 1268–1273.

L.S. Rožić, S.P. Petrović, Z.M. Vuković, T.B. Novaković, D.R. Stanisavljev, Optimalno faktorno planiranje procesa kiselinske aktivacije bentonita u mikrotalasnom polju, Hem. Ind. 65 (2011) 489–495 (in Serbian).

Z.N. Garba, A.R. Afidah, S.A. Hamza, Potential of Borassus aethiopum shells as precursor for activated carbon preparation by physicochemical activation; optimization, equilibrium and kinetic studies, J. Environ. Chem. Eng. 2 (2014) 1423–1433.

M. Zabeti, W.M.A.W. Daud, M.K. Aroua, Biodiesel production using alumina supported calcium oxide: An optimization study, Fuel Process. Technol. 91 (2010) 243–248.




DOI: https://doi.org/10.2298/HEMIND161018001Z

Copyright (c) 2017 HEMIJSKA INDUSTRIJA

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.