Čvrste disperzije sa karbamazepinom: optimizacija formulacija, karakterizacija i ispitivanje dugoročne stabilnosti

Marko Zoran Krstić, Igor Lukić, Alma Bušatlić, Nenad Lazarević, Dragana Vasiljević

Abstract


U ovom radu je izvršena optimizacija formulacija čvrstih disperzija sa karbamazepinom, primenom metode D-optimalnog eksperimentalnog dizajna smeše, u cilju povećanja brzine rastvaranja navedene teško rastvorljive aktivne supstance. Primenom metode eksperimen­talnog dizajna smeše, formulisane su čvrste disperzije variranjem udela karbamazepina (30‑50 %), Gelucire® 44/14 (20-40 %) i polimera Soluplus® (30-50 %) (ulazni parametri). Izrađeno je 16 formulacija, iz kojih je ispitana in vitro brzina rastvaranja karbamazepina. Kao izlazni parametri praćeni su procenti rastvorenog karbamazepina, nakon 10, 20, 30, 45 i
60 minuta. Najveći udeo oslobođenog karbamazepina iz čvrstih disperzija (preko 80 % zа
30 minutа) se postiže pri udelima aktivne supstance od oko 40 %, Soluplus® oko 45 % i Gelucire® 44/14 oko 25%. Nakon obrade podataka i optimizacije, iz različitih delova optimizacione oblasti odabrane su 3 formulacije za dalja ispitivanja. Rezultati ispitivanja odabranih optimizovanih uzoraka čvrstih disperzija nakon izrade, kao i nakon skladištenja 24 meseca pod ambijen­talnim uslovima (25 °C, 40 % RH), dobijeni primenom metoda diferen­cijalne skeni­rajuće kalorimetrije (DSC), infracrvene spektroskopije sa Furijeovom transfor­macijom (FT-IR) i Ramanske spektoskopije potvrdili su njihovu stabilnost i očuvanje kar­bamazepina u polimrfnom obliku III, jedinom farmakološki aktivnom obliku. Primenom PAMPA (eng. Parallel Artificial-Membrane Permeability Assay) testa pokazano je da je u dve, od tri ispitivane optimizovane čvrste disperzije očuvana, odnosno blago povećana permeabilnost karbamazepina.


Keywords


čvrste disperzije, karbamazepin, optimizacija formulacija, eksperimentalni dizajn, in vitro oslobađanje, fizička stabilnost

References


Potta S, Minemi S, Nukala N, Peinado C, Lamprou DA, Urquhart A, Douroumis D. Development of solid lipid nanoparticles for enhanced solubility of poorly soluble drugs. J Biomed Nanotechnol. 2010; 6: 634–640.

Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000; 50: 47–60.

Damian F, Blaton N, Naesens L, Balzarini J, Kinget R, Augustijns P, Vanden Mooter G. Physicochemical characterization of solid dispersions of the antiviral agent UC-781 with polyethylene glycol 6000 and Gelucire 44/14. Eur J Pharm Sci. 2000; 10: 311–322.

Kalivoda A, Fischbach M, Kleinebudde P. Application of mixtures of polymeric carriers for dissolution enhancement of oxeglitazar using hotmelt extrusion. Int J Pharmaceut. 2012; 439: 145–156.

Serajuddin A. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci-US. 1999; 88(10): 1058-1066.

Djuris J, Ioannis N, Ibric S, Djuric Z, Kachrimanis K. Effect of composition in the development of carbamazepine hot-melt extruded solid dispersions by application of mixture experimental design. J Pharm Pharmacol. 2014; 66 (2):232-243.

Krstić M, Ibrić S. Primena dizajna smeše u formulaciji i karakterizaciji čvrstih samo-nanoemulgujućih terapijskih sistema sa karbamazepinom. Hem Ind. 2016; 70(5): 525-537. (in Serbian)

Krstić M, Ražić S, Đekić Lj, Dobričić V, Momčilović M, Vasiljević D, Ibrić S. Application of a mixture experimental design in the optimization of the formulation of solid self-emulsifying drug delivery systems containing carbamazepine. Lat Am J Pharm. 2015; 34 (5): 885-894.

Dahan A, Miller MJ, Hoffman A, Amidon EG, Amidon LG. The solubility - permeability interplay in using cyclodextrins as pharmaceutical solubilizers: mechanistic modeling and application to progesterone. J Pharm Sci-US. 2010; 99(6): 2739-2749.

Kataoka M, Tsuneishi S, Maeda Y, Masaoka Y, Sakuma S, Yamashita S. A new in vitro system for evaluation of passive intestinal drug absorption: Establishment of a double artificial membrane permeation assay. Eur J Pharm Biopharm. 2014; 88(3): 840-846.

Kostewicz ES, Aarons L, Bergstrand M, Bolger MB, Galetin A, Hatley O, Jamei M, Lloyd R, Pepin X, Rostami-Hodjegan A, Sjögren E, Tannergren C, Turner DB, Wagner C, Weitschies W, Dressman J. PBPK models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci. 2014; 57: 300-321.

Dahan A, Miller JM. The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS J. 2012; 14(2): 244-251.

Krstić M, Popović M, Dobričić V, Ibrić S. Influence of Solid Drug Delivery System Formulation on Poorly Water-Soluble Drug Dissolution and Permeability. Molecules. 2015; 20: 14684-14698.

Moore JW, Flanner HH. Mathematical Comparison of curves with an emphasis on in vitro dissolution profiles. Pharm Tech. 1996; 20(6): 64-74.

Zhu C, Jiang L, Chen TM, Hwang KK. A comparative study of artificial membrane permeability assay for high-throughput profiling of drug absorption potential. Eur J Med Chem. 2002; 37: 399-407.

Shamma RN, Basha M. Soluplus®: A novel polymeric solubilizer for optimization of Carvedilol solid dispersion: Formulation design and effect of method of preparation. Powder Technol. 2013; 29(1): 161-165.

Porter C, Trevaskis N, Charman W. Nature Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007; 6: 231-248.

Löbenberg R, Amidon GL. Modern bioavailability, bioequivalence and biopharmaceutics classifcation system. New scientifc approaches to international regulatory standards. Eur J Pharm Biopharm. 2000; 50: 3-12.

Grzesiak A, Lang M, Kim K, Matzger A. Comparison of the four anhydrous polymorphs of carbamazepine and the crystal structure of form I. J Pharm Sci-US. 2003; 92: 2261-2271.

Yu L, Reutzel-Edens SM, Mitchell CA. Crystallization and Polymorphism of Conformationally Flexible Molecules: Problems, Patterns, and Strategies. Org Process Res Dev. 2000; 4(5): 396-402.

Krstić M, Ražić S, Vasiljević D, Spasojević Đ, Ibrić S. Application of experimental design in the examination of the dissolution rate of carbamazepine from formulations. Characterization of the optimal formulation by DSC, TGA, FT-IR and PXRD analysis. J Serb Chem Soc. 2015; 80(2): 209-222.

Rustichelli C, Gamberini G, Ferioli V, Gamberini MC, Ficarra R, Tommasini S. Solid-state study of polymorphic drugs: Carbamazepine. J Pharm Biomed Anal. 2000; 23(1): 41-54.

Kobayashi Y, Ito S, Itai S, Yamamoto K. Physicochemical properties and bioavailability of carbamazepine polymorphs and dihydrate. Int J Pharm. 2000; 193: 137-146.

Lazarević J, Uskoković-Marković S, Jelikić-Stankov M, Radonjić M, Tanasković D, Lazarević N, Popović Z. Intermolecular and low-frequency intramolecular Raman scattering study of racemic ibuprofen. Spectrochim Acta A. 2014; 126: 301-305.

Saikat R, Chamberlin B, Matzger A. Polymorph Discrimination Using Low Wavenumber Raman Spectroscopy. Org Process Res Dev. 2013;17(7): 976-980.

Krstic M, Djuris J, Petrovic O, Lazarevic N, Cvijic S, Ibric S. Application of the melt granulation technique in development of lipid matrix tablets with immediate release of carbamazepine. J Drug Deliv Sci Tech. 2017; 39: 467-474.




DOI: https://doi.org/10.2298/HEMIND171025013K

Copyright (c) 2018 HEMIJSKA INDUSTRIJA

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.