Determination of residues of sulfonylurea herbicides in soil by using microwave-assisted extraction and high performance liquid chromatographic method

Nada L. Grahovac, Zorica S. Stojanović, Snežana Ž. Kravić, Dejan Z. Orčić, Zvonimir J Suturović, Ankica Đ. Kondić-Špika, Jovica R. Vasin, Dragana B. Šunjka, Snežana P. Jakšić, Miloš M. Rajković, Nenad M. Grahovac

Abstract


A modified method for the analysis of nicosulfuron, rimsulfuron and prosulfuron was developed and validated by using microwave-assisted extraction (MAE) and ultra-perform­ance liquid chromatography with diode array detection in the ultraviolet region (HPLC-UV-DAD). The most important experimental parameters of extraction procedure and HPLC-UV-DAD technique were optimised in respect to those sulfonylurea herbicides. High rec­overies of the microwave-assisted extraction were obtained by using a dichloromethaneacetonitrile mixture (2:1 volume ratio) acidified with acetic acid (0.8 vol.%) with the addit­ion of urea. The mean recoveries at three spiking levels ranged from 97.47 to 98.76% for nicosulfuron, 97.88 to 99.17% for rimsulfuron and from 97.91 to 99.83% for prosulfuron. The limits of detection of nicosulfuron, rimsulfuron and prosulfuron were 0.95, 0.91 and 0.89 µg kg–1, respectively. The accuracy of the developed method was confirmed by HPLC coupled with tandem mass spectrometry parallel analyses. The developed method was used to investigate the dissipation dynamics of sulfonylurea herbicides in the real field trials in Vojvodina Province, Serbia. The obtained half-lives were 0.05, 0.23 and 0.15 days for recommended dose application of nicosulfuron, rimsulfuron and prosulfuron, respect­ively. Low residues and short half-life in soil suggested that the risk to sensitive rotational crops after application of those sulfonylurea herbicides is low when they are used in the appropriate dosages.


Keywords


sulfonylurea herbicide; microwave-assisted extraction; HPLC-UV-DAD; soil, dissipation

Full Text:

PDF (322 kB)

References


Q. Zhou, W. Liu, Y. Zhang, K.K. Liu, Action mechanisms of acetolactate synthase-inhibiting herbicides, Pestic. Biochem. Physiol. 89 (2007) 89–96.

E.M. Beyer, M.J. Duffy, J.V. Hay, D.D. Schlueter, in: P.C., Kearney, D.D. Kaufman, (Eds.), Sulfonylureas. Herbicides: chemistry, degradation and mode of action, Marcel Dekker, Inc., New York, 1988, pp. 117–189.

G. Boschin, A. D’Agostina, C. Antonioni, D. Locati, A. Arnoldi, Hydrolytic degradation of azimsulfuron, a sulfonylurea herbicide, Chemosphere 68 (2007) 1312–1317.

M.P. Azcarate, J.C. Montoya, W.C. Koskinen, Sorption, desorption and leaching potential of sulfonylurea herbicides in Argentinean soils, J. Environ. Sci. Health, B 50 (2015) 229–237.

B. Nyström, B. Björnsäter, H. Blanck, Effects of sulfonylurea herbicides on non-target aquatic micro-organisms: growth inhibition of micro-algae and short-term inhibition of adenine and thymidine incorporation in periphyton communities, Aquat. Toxicol. 47 (1999) 9–22.

K. Liu, Z. Cao, X. Pan, Y. Yu, Using in situ pore water concentrations to estimate the phytotoxicity of nicosulfuron in soils to corn (Zea mays L.), Environ. Toxicol. Chem. 31 (2012) 1705–1711.

Q. Zhou, J. Liu, Y. Cai, G. Liu, G. Jiang, Micro-porous membrane liquid–liquid extraction as an enrichment step prior to nonaqueous capillary electrophoresis determination of sulfonylurea herbicides, Microchem. J. 74 (2003) 157–163.

A.L. Howard, L.T. Taylor, Quantitative supercritical fluid extraction of sulfonyl urea herbicides from aqueous matrices via solid phase extraction disks, J. Chromatogr. Sci. 30 (1992) 374–382.

G. Ye, W. Zhang, X. Cui, C. Pan, S. Jiang, Determination and quantitation of ten sulfonylurea herbicides in soil samples using liquid chromatography with electrospray ionization mass spectrometric detection, Chinese J. Anal. Chem. 34 (2006) 1207–1212.

G. Gervais, S. Brosillon, A. Laplanche, C. Helen, Ultra-pressure liquid chromatography–electrospray tandem mass spectrometry for multiresidue determination of pesticides in water, J. Chromatogr., A 1202 (2008) 163–172.

R. Gallitzendörfer, T. Timm, D. Koch, M. Küsters, M. Gerhartz, Simultaneous determination of 12 sulfonylurea herbicides in drinking water after SPE by LC-DAD, Chromatographia 73 (2011) 813–816.

Y.J. Wu, X.W. Fu, H.Yang, Cloud point extraction with Triton X-114 for separation of metsulfuron-methyl, chlorsulfuron, and bensulfuron-methyl from water, soil, and rice and analysis by high-performance liquid chromatography, Arch. Environ. Con. Tox. 61 (2011) 359–367.

G. Fang, J. Chen, J. Wang, J. He, S. Wang, N-Methylimidazolium ionic liquid-functionalized silica as a sorbent for selective solid-phase extraction of 12 sulfonylurea herbicides in environmental water and soil samples, J. Chromatogr., A 1217 (2010) 1567–1574.

Q. Wu, C. Wang, Z. Liu, C. Wu, X. Zeng, J. Wen, Z. Wang, Dispersive solid-phase extraction followed by dispersive liquid–liquid microextraction for the determination of some sulfonylurea herbicides in soil by high-performance liquid chromatography, J. Chromatogr., A 1216 (2009) 5504–5510.

X.W. Fu, Y.J. Wu, J.R. Qu, H. Yang, Preparation and utilization of molecularly imprinted polymer for chlor-sulfuron extraction from water, soil, and wheat plant, Environ. Monit. Assess. 184 (2012) 4161–4170.

P. Degelmann, J. Wenger, R. Niessner, D. Knopp, Development of a Class-Specific ELISA for Sulfonylurea Herbicides (Sulfuron Screen), Environ. Sci. Technol. 38 (2004) 6795–6802.

N. Font, F. Hernández, E.A. Hogendoorn, R.A. Baumann, P. van Zoonen, Microwave-assisted solvent extraction and reversed-phase liquid chromatography–UV detection for screening soils for sulfonylurea herbicides, J. Chromatogr., A 798 (1998) 179–186.

S. Polati, M. Bottaro, P. Frascarolo, F. Gosetti, V. Gianotti, M.C. Gennaro, HPLC-UV and HPLC-MSn multi-residue determination of amidosulfuron, azimsulfuron, nicosulfuron, rimsulfuron, thifensulfuron methyl, tribenuron methyl and azoxystrobin in surface waters, Anal. Chim. Acta 579 (2006) 146–151.

H.Y. Niu, Y.L. Shi, Y.Q. Cai, F.S. Wei, G.B. Jiang, Solid-phase extraction of sulfonylurea herbicides from water samples with single-walled carbon nanotubes disk, Microchim. Acta 164 (2009) 431–438.

C. Quesada-Molina, M. del Olmo-Iruela, A.M. Garcia-Campana, Trace determination of sulfonylurea herbicides in water and grape samples by capillary zone electrophoresis using large volume sample stacking, Anal. Bioanal. Chem. 397 (2010) 2593–2601.

J. Rouchaud, O. Neus, C. Moulard, Analysis of the sulfonylurea herbicide metsulfuron-methyl and its metabolites in the soil of cereal crops. Comparative analytical chemistry of the sulfonylureas, Int. J. Environ. Anal. Chem. 79 (2001) 65–80.

Q. Wu, X. Chen, Y. Xu, L. Han, Dissipation and residues of nicosulfuron in corn and soil under field conditions, Bull Environ. Contam. Toxicol. 85 (2010) 79–82.

S. Kang, N. Chang, Y. Zhao, C.P. Pan, Development of a Method for the Simultaneous Determination of Six Sulfonylurea Herbicides in Wheat, Rice, and Corn by Liquid Chromatography–Tandem Mass Spectrometry, J. Agric. Food Chem. 59 (2011) 9776–9781.

J. Fenoll, P. Hell´ın, P. Sabater, P. Flores, S. Navarro, Trace analysis of sulfonylurea herbicides in water samples by solid-phase extraction and liquid chromatography-tandem mass spectrometry, Talanta 101 (2012) 273–282.

E.A. Hogendoorn, R. Huls, E. Dijkman, R. Hoogerbrugge, Microwave assisted solvent extraction and coupled-column reversed-phase liquid chromatography with UV detection: Use of an analytical restricted-access-medium column for the efficient multi-residue analysis of acidic pesticides in soils, J. Chromatogr., A 938 (2001) 23–33.

S. Seccia, S. Albrizio, P. Fidente, D. Montesano, Development and validation of a solid-phase extraction method coupled to high-performance liquid chromatography with ultraviolet-diode array detection for the determination of sulfonylurea herbicide residues in bovine milk samples, J. Chromatogr., A 1218 (2011) 1253–1259.

M.X. Yang, Y.Y. Zhang, S. Lin, X.L. Yang, Z.J. Fan, L.X. Yang, X.C. Dong, Preparation of a bifunctional pyrazosulfuron-ethyl imprinted polymer with hydrophilic external layers by reversible addition–fragmentation chain transfer polymerization and its application in the sulfonylurea residue analysis, Talanta 114 (2013)143–151.

R.P. Hultgren, R.J.M. Hudson, G.K. Sims, Effects of soil pH and soil water content on prosulfuron dissipation, J. Agric. Food Chem. 50 (2002) 3236–3243.

C.A. Poppell, R.M. Hayes, T.C. Mueller, Dissipation of nicosulfuron and rimsulfuron in surface soil, J. Agric. Food Chem. 50 (2002) 4581–4585.

C. Molins, E.A. Hogendoorn, H.A.G. Heusinkveld, A.C. Van Beuzekom, P. Van Zoonen, R.A. Baumann, Effect of organic matter content in the trace analysis of triazines in various types of soils with GC-NPD, Chromatographia 48 (1998) 450–456.

ISO 11464: Soil Quality – Pretreatment of Samples for Physico-chemical Analysis. International Organization for Standardization, Genève, 2006.

ISO 10390: Soil Quality – Determination of pH. International Organization for Standardization, Genève, 2010.

ISO 10694: Soil Quality – Determination of TOC and total C – Volumetric Method. International Organization for Standardization, Genève, 2005.

A.L. Richards, Diagnosis and improvement of saline and alkali soils, Agriculture Handbook, USA, 1954.

AOAC Official Method 972.43: Microchemical determination of carbon, hydrogen, and nitrogen, automated method. Official methods of analysis of AOAC International, Gaithersburg, MD, 2006.

J. Bos, A. Jolley, P. Johnstone (Eds.), Herbicide Persistence in Australian Winter Cereal Cropping Systems: The Triazines, the Sulfonylureas, the Dinitroanilines. Agmedia, 1995, pp. 148–160.

IUSS Working Group WRB, World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106, FAO, Rome, 2014.

EPPO (European and Mediterranean Plant Protection Organization), EPPO standards – efficacy evaluation of plant protection products – PP1/207(2) effects on succeeding crops, EPPO Bull. 37 (2007) 452–458.

S. Mitra, Sample Preparation Techniques in Analytical Chemistry, John Wiley & Sons, Hoboken, NJ, 2003.

R. Gorenflo, J. Loutchko, Y. Luchko, D.T.F. Mainardi, Computation of the Mittag–Leffler function Ealpha, beta(z) and its derivative, Fract. Calc. Appl. Anal. 5 (2002) 491–518.

I. Podlubny, Fractional differential equations, Academic Press, San Diego, CA, 1999.

J. Popović, D. Spasić, J. Tosić, J. Kolarović, R. Malti, I. Mitić, S. Pilipović, T. Atanacković, Fractional model for pharmacokinetics of high dose methotrexate in children with acute lymphoblastic leukaemia, Commun. Non-linear Sci. Numer. Simulat. 22 (2015) 451–471.

G. Dinelli, E. Di Martino, A. Vicari, Influence of soil moisture and temperature on degradation of three sulfonylurea herbicides in soil, Agrochimica 42 (1998) 50–58.

G.E. Schneiders, M.K. Koeppe, M.V. Naidu, P. Horne, A.M. Brown, C.F. Mucha, Fate of rimsulfuron in the environment, J. Agric. Food Chem. 41 (1993) 2404–2410.

J. Rouchaud, O. Neus, D. Callens, R. Bulcke, Soil metabolism of the herbicide rimsulfuron under laboratory and field conditions, J. Agric. Food Chem. 45 (1997) 3283–3291.

M.M. Afyuni, M.G. Wagger, R.B. Leidy, Runoff of two sulfonylurea herbicides in relation to tillage system and rainfall intensity, J. Environ. Qual. 26 (1997) 1318–1326.




DOI: http://dx.doi.org/10.2298/HEMIND160224039G

Copyright (c) 2017 HEMIJSKA INDUSTRIJA

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.