Uticaj nanočestica silicijum(IV)oksida na termička i mehanička svojstva nanokompozita na bazi alifatičnih poliuretana
Main Article Content
Abstract
U ovom radu su sintetisane dve serije nanokompozita na bazi alifatičnih poliuretana dodavanjem dva tipa nanopunila silicijum(IV)oksida različitih veličina čestica i specifične površine, u različitim udelima (0,00 0,15, 0,50, 1,00 i 3,50 mas.%). Ispitivan je uticaj nanopunila na termička i mehanička svojstva sintetisanih nanokompozita. Utvrđeno je da prisustvo nanočestica većih dimenzija u poliuretanskoj matrici smanjuje termičku stabilnost i utiče na promenu mehanizma termičke degradacije nanokompozita na bazi alifatičnih poliuretana. Uočeno je da postignuta homogena raspodela SiO2 čestica manjih dimenzija u strukturi nanokompozita na bazi alifatičnih poliuretana utiče na njihovu interakciju sa tvrdim i mekim gradivnim blokovima elastomera, a na osnovu toga i na termičku stabilnost, kao i na povećanje temperature maksimalne brzine prvog i drugog stupnja termičke degradacije. Primenom termogravimetrijske analize i Flin-Volovog (Flynn-Wall) i Tupovog (Toop) kinetičkog modela, dobijeni su podaci o uticaju udela čestica SiO2 manjih dimenzija na vrednosti energije aktivacije i maksimalne temperature kojima nanokompoziti na bazi alifatičnih poliuretana mogu biti izloženi termičkoj degradaciji u vremenskom intervalu od 60 min, a da pri tom ne dođe do gubitka mase većeg od 1 i 5 mas.%. Maksimalne vrednosti energije aktivacije pri 1 i 5 mas.% konverzije su dobijene za uzorke modifikovane dodatkom malih udela A380 nanočestica (0,50 i 0,15 mas.%). Prisustvo nanočestica silicijum(IV)oksida u poliuretanskoj matrici dovodi do opadanja vrednosti zatezne čvrstoće, prekidnog izduženja, Jungovog modula elastičnosti i tvrdoće poliuretanske matrice.
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
How to Cite
References
Szycher M. Szycher's Handbook of Polyurethanes. 2nd ed., New York, CRC Press; 2012.
Moravek SJ, Hassan MK, Drake DJ, Cooper TR, Wiggins JS, Mauritz KA, Storey RF. Seawater Degradable Thermoplastic Polyurethanes, J Appl Polym Sci. 2010; 115: 1873–1880.
Prisacariu C. Polyurethane Elastomers From Morphology to Mechanical Aspects. New York, Springer-Verlag Wien; 2011.
Velankar S, Cooper SL. Effect of block incompatibility on the microstructure. Macromolecules. 2000; 33: 382-394.
Špírková M, Strachota A, Urbanová M, Baldriand J, Brus J, Šlouf M, Kuta A, Hrdlička Z. Structural and surface properties of novel polyurethane films. Mater Manuf Process. 2009; 24: 1185-1189.
Tetsuo M. Study on Structure and Properties of Aliphatic Poly(carbonate)glycols and their Polyurethane Elastomers. PhD thesis, Nagasaki University, 2006.
Špírková M, Pavlicevic J, Strachota A, Poreba R, Bera O, Kaprálková L, Baldrian J, Šlouf M, Lazic N, Budinski-Simendic J. Novel polycarbonate-based polyurethane elastomers: Composition-property relationship. J Europ Polym J. 2011; 47: 959-972.
Eceiza A, Martin MD, de la Caba K, Kortaberria G, Gabilondo N, Corcuera MA, Mondragon I. Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: Mechanical and thermal properties. Polym Eng Sci. 2008; 48: 297–306.
Fernandez-dArlas B, Corcuera M, Runtb J, Eceiza A. Block architecture influence on the structure and mechanical performance of drawn polyurethane elastomers. Polym Int. 2014; 63: 1278–1287.
Pavličević J, Špírková M, Bera O, Jovičić M, Pilić B, Baloš S, Budinski-Simendić J. The influence of ZnO nanoparticles on thermal and mechanical behavior of polycarbonate-based polyurethane composites. Compos Part B-Eng. 2014; 60: 673-679.
Chattopadhyay DK, Webster DC. Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci. 2009; 34: 1068-1133.
Pavličević J, Budinski-Simendić J, Mészaros Szécényi K, Lazić N, Špirková M, Strachota A Termička stabilnost segmentiranih poliuretanskih elastomera ojačanih česticama gline. Hem Ind. 2009; 63: 621-628. (in Serbian)
Tien YI, Wei KH. The effect of nano-sized silicate layers from montmorillonite on glass transition, dynamic mechanical, and thermal degradation properties of segmented polyurethane, J Appl Polym Sci. 2002; 86: 1741–1748.
Petrovic ZS, Javni I, Waddon A, Banhegyi G. Structure and properties of polyurethane–silica nanocomposites, J Appl Polym Sci. 2000; 76: 133–151.
Petrovic ZS, Cho YJ, Javni I, Magonov S, Yerina N, Schaefer DW, Ilavsky J, Waddone A. Effect of silica nanoparticles on morphology of segmented polyurethanes, Polymer. 2004; 45: 4285–4295.
Hong Y, Guan J, Fujimoto KL, Hashizume R, Pelinescu AL, Wagner WR. Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds, Biomaterials. 2010; 31: 4249–4258.
Vega-Baudrit J, Navarro-Bañón V, Vázquez P, Martín-Martínez JM. Addition of nanosilicas with different silanol content to thermoplastic polyurethane adhesives, Int J Adhes Adhes. 2006; 26: 378–387.
Mercado-Pagán AE, Kang Y, Elmer Ker DF, Park S, Yao J, Bishop J, Yang YP. Synthesis and characterization of novel elastomeric poly(D,L-lactide urethane) maleate composites for bone tissue engineering. Eur Polym J. 2013; 49: 3337-3349.
Poreba R, Špírková M, Hrdlička Z. Mechanical and thermomechanical properties of polycarbonate-based polyurethane-silica nanocomposites. Process Appl Ceram. 2011; 5: 155-159.
Poreba R, Špirková M, Pavličević J, Budinski-Simendić J, Mészáros Szécsényi K, Holló B, Aliphatic polycarbonate-based polyurethane nanostructured materials. The influence of the composition on thermal stability and degradation, Compos Part B-Eng. 2014; 58: 496–501.
Pavličević J, Špirková M, Bera O, Jovičić M, Mészáros Szécsényi K, Budinski-Simendić J. The influence of bentonite and montmorillonite addition on the thermal decomposition of novel polyurethane/organoclay nanocomposites. Maced J Chem Chem Eng. 2013; 32: 319–330.
Chuang FS, Tsen WC, Shu YC. The effect of different siloxane chain-extenders on the thermal degradation and stability of segmented polyurethanes. Polym Degrad Stabil. 2004; 84: 69–77.
Poreba R, Kredatusova J, Hodan J, Serkis M, Špirková M. Thermal and mechanical properties of multiple-component aliphatic degradable polyurethanes. J Appl Polym Sci. 2015; 132: 41872,1 - 12.
Govorčin Bajsić E, Rek V, Agić A. Thermal degradation of polyurethane elastomers: determination of kinetic parameters. J Elastom Plast. 2003; 35: 311-323.
Legge NR, Holden G, Schroeder HE, eds. Thermoplastic elastomers - a comprehensive review. Munich, Hanser Publishers; 1987.
Boubakri A, Haddar N, Elleuch K, Bienvenu Y. Impact of aging conditions on mechanical properties of thermoplastic polyurethane. Mater Design. 2010; 31: 4194–4201.
Ehrenstein G, Pongratz S. Resistance and stability of polymers. Carl Hanser Verlag; 2013.
Petrovic ZS, Zavargo Z, Flynn JH, Macknight WJ. Thermal degradation of segmented polyurethanes. J Appl Polym Sci 1994; 51: 1087-1095.
Filip D, Macocinschi D, Vlad S. Thermogravimetric study for polyurethane materials for biomedical applications. Compos Part B-Eng. 2011; 42: 1474-1479.
Flynn JH, Wall LA, A quick, direct method for the determination of activation energy from thermogravimetric data, J Polym Sci Pol Letter. 1966; 4: 323-328.
Jovičić M, Bera O, Pavličević J, Simendić V, Radičević R. Uticaj udela montmorilonita na kinetiku umrežavanja epoksidnih nanokompozita. Hem Ind. 2012; 66: 863-870. (in Serbian)
Pavličević J, Jovičić M, Simendić V, Bera O, Radičević R, Špírková M. Modifikacija epoksidnih smola termoplastičnim segmentiranim poliuretanima na osnovu polikarbonatnog diola. Hem Ind. 2014; 68: 755-765. (in Serbian)
Aboulkas A, El Harfi K, El Bouadili A. Thermal degradation behavior of polyethylene and polypropylene. Part I: Pyrolisis kinetics and mechanism. Energ Convers Manage. 2010; 51: 1363-1369.
Petrović Z, Zavargo Z. Reliability of methods for determination of kinetic parameters from thermogravimetry and DSC measurements. J Appl Polym Sci 1986; 32: 4353-4367.
Flynn JH. Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966; 70A: 487-523.
Toop DJ. Theory of life testing and use of thermogravimetric analysis to predict the thermal life of wire enamels. IEEE T Dielect El In. 1971; EI-6: 2-14.
Harvey JA. Lifetime predictions of plastics. In: Kutz M, ed. Handbook of environmental degradation of materials. New York, William Andrew Inc.; 2005: 65-77.
Nguyen LH, Gu M. Decomposition kinetics, life estimation, and dielectric study of an acrylate based photopolymer for microfabrication and photonic applications. Macromol Chem Phys. 2009; 206: 1659-1669.
Yang J, Miranda R, Roy C. Using the DTG curve fitting method to determine the apparent kinetic parameters of thermal decomposition of polymers. Polym Degrad Stabil. 2001; 73: 455–461.
Paik P, Kar KK. Kinetics of thermal degradation and estimation of lifetime for polypropylene particles: Effects of particle size. Polym Degrad Stabil. 2008; 93: 24-35.
Park JW, Oh SC, Lee HP, Kim HT, Yoo KO. A kinetic analysis of thermal degradation of polymers using a dynamic method. Polym Degrad Stabil. 2000; 67: 535–540.
Jasińska L, Haponiuk JT, Balas A. Dynamic mechanical properties and thermal degradation process of the compositions obtained from unsaturated poly(ester urethanes) cross-linked with styrene. J Therm Anal Calorim. 2008; 93: 777-781.
Khawam A. Application of solid-state kinetics to desolvation reactions. PhD thesis, University of Iowa, USA, 2007.
Ramirez NV, Sanchez-Soto M, Illescas S. Enhancement of POM thermooxidation resistance through POSS nanoparticles. Polym Composite. 2011; 32: 1584-1592.
Pandey JK, Reddy KR, Mohanty AK, Misra M, eds. Handbook of polymer nanocomposites. Processing, performance and application. Volume A, London, Springer; 2014.
Kontou E, Anthoulis G. The effect of silica nanoparticles on the thermomechanical properties of polystyrene. J Appl Polym Sci. 2007; 105: 1723-1731.