Mikrofiltracija sa periodičnim povratnim ispiranjem kao alternativna tehnika za povećanje fluksa permeata

Tijana Urošević, Dragan Povrenović, Predrag Vukosavljević, Ivan Urošević

Abstract


U ovom radu je ispitan uticaj radnih parametara (transmembranski prtisak, temperatura, brzina strujanja retentata) na unakrsnu (cross – flow) mikrofiltraciju model rastvora voćnog soka i periodično povratno ispiranje vazduhom. U eksperimentima je korišćena keramička Kerasep W5 membrana sa granicom separacije od 0,2 µm. Određen je optimalni transmembranski pritisak, koji iznosi 2 bara. Optimalna temperatura procesa bistrenja voćnih sokova mikrofiltracijom je 55°C. Više temperature se ne koriste zbog degradativnog efekta na hemijski sastav soka i dugog procesa mikrofiltracije. Sa porastom temperature retentata od 22°C do 55°C ostvaruje se porast fluksa permeata do 60 %. Povećanjem brzine strujanja retentata smanjuje se debljina formiranog sloja na površini membrane. Zbog ograničenja korišćene aparature i velike površine membrane, postignute specifične brzine strujanja retentata su male, pa efekat unakrsne filtracije izostaje. Periodičnim povratnim ispiranjem se nataloženi sloj na membrani podiže, fluks permeata je u visokoj zoni i sprečava se uspostavljanje stacionarnog stanja u zoni niskih flukseva. Vreme utrošeno na povratno ispiranje je malo u odnosu na povećanje sakupljene mase permeata. U svim eksperimentima sa povratnim ispiranjem sakupljena masa permeata je veća do 72,5 % u odnosu na eksperimente bez povratnog ispiranja. Povećanjem vremena trajanja povratnog ispiranja povećanje fluksa je do 5 %, što može biti značajno za mikrofiltraciju u industrijskim uslovima.


Keywords


mikrofiltracija; periodično povratno ispiranje; model rastvor voćnih sokova

References


Baker RW. Membrane Technology and Applications. 2nd ed. New York, NY: John Wiley & Sons; 2004.

Vasilišin L, Grubačić M. The effect of different ways clarification on the quality of concentrated apple juice. J. Yugoslav Pomology. 2003; 163-167.

Girard B, Fukumoto LR. Membrane processing of fruit juices and beverages: a review. Crit. Rev. Food Sci. Nutr. 2000; 40: 91-157.

Mondor M, Girard B, Moresoli C. Modeling flux behaviour for membrane filtration of apple juice. Food Res. Int. 2000; 33: 539-548.

Su SK, Liu JC, Wiley RC. Cross-flow microfiltration with gas backwashing of apple juice. J. Food Sci. 1993; 58: 638-641.

Padilla-Zakour O, McLelln MR. Optimization and modelling of apple juice cross-flow microfiltration with ceramic membrane. J. Food. Sci. 1993; 58: 369-388.

Vladisavljević GT, Vukosavljević P, Veljović MS. Clarification of red raspberry juice using microfiltration with gas backwashing: A variable strategy to maximize permeate flux and minimize a loss of anthocyanins. Food Bioprod. Process. 2013; 91: 473-480.

Gupta BB, Blanpain P, Jaffrin MY. Permeate flux enhancement by pressure and flow pulsations in microfiltration with mineral membranes. J. Membr. Sci. 1992; 70: 257-266.

Laorko A, Li Z, Tongchitpakdee S, Youravong W. Effect of gas sparging on flux enhancement and phytochemical properties of clarified pineapple juice by microfiltration. Sep. Purif. Technol. 2011; 80: 445-451.

Fouladitajar A, Zokaee F, Rezaei H, Kargari A. Gas sparging to enhance permeate flux and reduce fouling resistances in cross-flow microfiltration. J. Ind. Eng. Chem. 2014; 20: 624-632.

Pal S, Ambastha S, Ghosh TB, De S, Gupta SD. Optical evaluation of deposition thickness and measurement of permeate flux enhancement of simulated fruit juice in presence of turbulence promoters. J. Membr. Sci. 2008; 315: 58-66.

Sarkar B, De S, Gupta SD. Pulsed electric field enhanced ultrafiltration of synthetic and fruit juice. Sep. Purif. Technol. 2008; 63: 582-591.

Sarkar B, Gupta SD, De S. Cross-flow electro-ultrafiltration of mosambi (Citrus Sinensis (L.) Osbeck) juice. J. Food Eng. 2008; 89: 241-245.

Rai P, Majumdar GC, Gupta SD, De S. Effect of various pretreatment methods on permeate flux and quality during ultrafiltration of mosambi juice. J. Food Eng. 2007; 78 (2): 561-568.

Youn KS, Hong JH, Bae DH, Kim SJ, Kim SD. Effective clarifying process of reconstituted apple juice using membrane filtration with filter-aid pretreatment. J. Membr. Sci. 2004; 228: 179-186.

Vladisavljević GT. Ispitivanje ultrafiltracije koloidnih rastvora na modelu nekih neorganskih oksida. Magistarska teza. TMF, Beograd. 1992. (in Serbian)

Simonović D, Vuković D, Cvijović S, Končar S. Tehnološke operacije I – Mehaničke operacije. TMF, Beograd. 1989. (in Serbian)

Wagner J. Membrane Filtration Handbook, Practical tips and hints. 2nd ed. Osmonics Inc. 2001.

Field RW, Wu D, Howell JA, Gupta BB. Critical flux concept for microfiltration fouling. J. Membr. Sci. 1995; 100: 259-272.

Field RW, Pearce GK. Critical, suistainable and threshold fluxes for membrane filtration with water industry applications. Adv. Coll. Int. Sci. 2011; 164: 38-44.

Constenla DT, lazano JE. Hollow fibre ultrafiltration of apple juice: Macroscopic approach. Lebensm. Wiss. U. Technol. 1997; 30: 373-378.

Bruijn J, Bórquez R. Analysis of the fouling mechanisms during cross-flow ultrafiltration of apple juice. LWT. 2006; 39: 861-871.

Fukumoto LR, Delaquis P, Girard B. Microfiltration and ultrafitration ceramic membranes for apple juice clarification. J. Food. Sci. 1998; 63: 845-850.




DOI: http://dx.doi.org/10.2298/HEMIND170814021U

Copyright (c) 2018 HEMIJSKA INDUSTRIJA

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.