Decolorization of crystal violet over TiO2 and TiO2 doped with zirconia photocatalysts

Main Article Content

Marija B. Vasic
Marjan S. Randjelovic
Jelena Z. Mitrovic
Nikola I. Stojkovic
Branko Z. Matovic
Aleksandra R. Zarubica

Abstract

Titania based catalyst and TiO2 doped with zirconia were prepared by modified sol–gel method. The synthesized catalysts samples were characterized by BET, XRD, SEM and FTIR techniques. Photocatalytic activity was tested in the reaction of crystal violet (CV) dye decolorization/decomposition under UV light irradiation. The effect of several operational parameters, such as catalyst dosage, initial dye concentrations, duration of UV irradiation treatment and number of reaction cycles were also considered. The obtained results indi­cated faster dye decolorization with the increase of the catalyst amount and a decrease of initial CV concentrations. An influence of doping with zirconia on the physico-chemical pro­perties of bare titania was studied. The doping procedure had affected photocatalytic pro­perties of the final catalytic material, and had improved photocatalytic performances of doped catalyst on crystal violet decolorization/degradation in comparison to bare titania.

Article Details

Section

-

How to Cite

[1]
M. B. Vasic, M. S. Randjelovic, J. Z. Mitrovic, N. I. Stojkovic, B. Z. Matovic, and A. R. Zarubica, “Decolorization of crystal violet over TiO2 and TiO2 doped with zirconia photocatalysts”, Hem Ind, vol. 71, no. 3, pp. 259–269, Jul. 2017, doi: 10.2298/HEMIND160521036V.

References

H.-J. Fan, C.S. Lu, W.-L. W. Lee, M.-R. Chiou, C.-C. Chen, Mechanistic pathways differences between P25-TiO2 and Pt-TiO2 mediated CV Photodegradation, J. Hazard. Mater. 185 (2011) 227–235.

C.-C. Chen, W.-C. Chen, M.-R. Chiou, S.-W. Chen, Y. Y. Chen, H.-J. Fan, Degradation of crystal violet by an FeGAC/H2O2 process, J. Hazard. Mater. 196 (2011) 420–425.

W.-L. W. Lee, S.-T. Huang, J.-L. Chang, J.-Y. Chen, M.-C. Cheng, C.-C. Chen, Photodegradation of CV over nano-crystalline bismuth tungstate prepared by hydrothermal synthesis, J. Mol. Catal. A-Chem. 361–362 (2012) 80–90.

B. Gao, T. M. Lim, D. P. Subagio, T.-T. Lim, Zr-doped TiO2 for enhanced photocatalytic degradation of bisphenol A, Appl. Catal., A-Gen. 375 (2010) 107–115.

R. Jain, M. Shrivastava, Photocatalytic removal of hazardous dye cyanosine from industrial waste using titanium dioxide, J. Hazard. Mater. 152 (2008) 216–220.

L. Andronic, D. Andrasi, A. Enesca, M. Visa, A. Duta, The influence of titanium dioxide phase composition on dyes Photocatalysis, J. Sol Gel Sci. Technol. 58 (2011) 201–208.

G.N. Shao, S.M. Imran, S.J. Jeon, M. Engole, N. Abbas, M.S. Haider, S.J. Kang, H.T. Kim, Sol–gel synthesis of photoactive zirconia–titania from metal salts and investigation of their photocatalytic properties in the photodegradation of methylene blue, Powder. Technol. 258 (2014) 99–109.

D. Kapusuz, J. Park, A. Ozturk, Sol–gel synthesis and photocatalytic activity of B and Zr co-doped TiO2, J. Phys. Chem. Solids. 74 (2013) 1026–1031.

J. Lukáč, M. Klementová, P. Bezdička, S. Bakardjieva, J. Šubrt, L. Szatmáry, Z. Bastl, J. Jirkovský, Influence of Zr as TiO2 doping ion on photocatalytic degradation of 4-chlorophenol, Appl. Catal., B-Environ. 74 (2007) 83–91.

J. Choina, Ch. Fischer, G.-U. Flechsig, H. Kosslick, V.A. Tuan, N.D. Tuyend, N.A. Tuyen, A. Schulz, Photocatalytic properties of Zr-doped titania in the degradation of the pharmaceutical ibuprofen, J. Photochem. Photobiol., A 274 (2014) 108–116.

R.R. Bhosale, S.R. Pujari, G.G. Muley, S.H. Patil, K.R. Patil, M.F. Shaikh, A.B. Gambhire, Solar photocatalytic degradation of methylene blue using doped TiO2 nano-particles, Solar Energy 103 (2014) 473–479.

J. Wang, Y. Lv, L. Zhang, B. Liu, R. Jiang, G. Han, R. Xu, X. Zhang, Sonocatalytic degradation of organic dyes and comparison of catalytic activities of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites under ultrasonic irradiation, Ultrason. Sonochem. 17 (2010) 642–648.

M.A. Barakat, G. Hayes, S. Ismat-Shah, Effect of Cobalt Doping on the Phase Transformation of TiO2 Nano-particles, J. Nanosci. Nanotechnol. 5 (2005) 1–7.

R. Spurr, H. Myers, Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer, Anal. Chem. 29 (1957) 760–761.

D. Mardare, A. Manole, A. Yildiz, D. Luca, Photoinduced Wettability of Titanium Oxide Thin Films, Chem. Eng. Comm. 198 (2011) 530–540.

S. Bakardjieva, J. Subrt, V. Stengl, M.J. Dianez, M.J. Sayagues, Photoactivity of anatase–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase, Appl. Catal., B-Environ. 58 (2005) 193–202.

S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory of the van der Waals adsorption of gases, J. Am. Chem. Soc. 62 (1940) 1723–1732.

J.C. Morales-Ortuno, R.A. Ortega-Dominguez, P. Hernandez-Hipolito, X. Bokhimi, T.E. Klimova, HDS performance of NiMo catalysts supported on nanostructured materials containing titania, Catal. Today 271 (2016) 127–139.

A.L. Castro, M.R. Nunes, A.P. Carvalho, F.M. Costa, M.H. Florencio, Synthesis of anatase TiO2 nanoparticles with high temperature stability and photocatalytic activity, Solid State Sci. 10 (2008) 602–606.

D.A.H. Hanaor, C.C. Sorrell, Review of the anatase to rutile phase transformation, J. Mater. Sci. 46 (2011) 855–874.

Q. Zhang, L. Gao, J. Guo, Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis, Appl. Catal., B: Environ. 26 (2000) 207–215.

M.A. Behnajady, H. Eskandarloo, N. Modirshahla, M. Shokri, Investigation of the effect of sol–gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles, Desalination 278 (2011) 10–17.

T. Lopez, R. Gomez, E. Sanchez, F. Tzompantzi, L. Vera, Photocatalytic Activity in the 2,4-Dinitroaniline Decomposition Over TiO2 Sol-Gel Derived Catalysts, J. Sol Gel Sci. Technol. 22 (2001) 99–107.

C. Fu, Y. Gong, Y. Wu, J. Liu, Z. Zhang, C. Li, L. Niu, Photo¬catalytic enhancement of TiO2 by B and Zr co-doping and modulation of microstructure, Appl. Surf. Sci. 379 (2016) 83–90.

M.A. Henderson, A surface science perspective on TiO2 photocatalysis, Surf. Sci. Rep. 66 (2011) 185–297.

M.D. Hernández-Alonso, I. Tejedor-Tejedor, J.M. Coronado, M.A. Anderson, Operando FTIR study of the photocatalytic oxidation of methyl cyclohexane and toluene in air over TiO2–ZrO2 thin films: Influence of the aromaticity of the target molecule on deactivation, Appl. Catal., B-Environ. 101 (2011) 283–293.

F. Fresno, M.D. Hernandez-Alonso, D. Tudela, J.M. Coronado, J. Soria, Photocatalytic degradation of toluene over doped and coupled (Ti,M)O2 (M = Sn or Zr) nanocrystalline oxides: Influence of the heteroatom distribution on deactivation, Appl. Catal., B-Environ. 84 (2008) 598–606.

J.C. Yu, J. Lin, R.W.M. Kwok, Ti1–xZrxO2 Solid Solutions for the Photocatalytic Degradation of Acetone in Air, J. Phys. Chem., B 102 (1998) 5094–5098.

X. Fu, L.A. Clark, Q. Yang, M.A. Anderson, Enhanced Photocatalytic Performance of Titania-Based Binary Metal Oxides: TiO2/SiO2 and TiO2/ZrO2, Environ. Sci. Technol. 30 (1996) 647–653.

Y. Liu, H. Yu, Z. Lv, S. Zhan, J. Yang, X. Peng, Y. Ren, X. Wu, Simulated-sunlight-activated photocatalysis of Methylene Blue using cerium-doped SiO2/TiO2 nano-structured fibers, J. Environ. Sci. 24 (2012) 1867–1875.

R. Kumar, J. Rashid, M.A. Barakat, Zero valent Ag deposited TiO2 for the efficient photocatalysis of methylene blue under UV-C light irradiation, Colloids Interface Sci. Commun. 5 (2015) 1–4.

M. Kosmulski, The significance of the difference in the point of zero charge between rutile and anatase, Adv. Colloid Interface Sci. 99 (2002) 255–264.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)