Reciklaža katodnog materijala LiCo0,59Mn0,26Ni0,15O2 iz istrošenih litijum-jonskih baterija metodom sagorevanja citratnog gela

Main Article Content

Jelena V. Senćanski
Milica J. Vujković
Ivana B. Stojković
Divna M. Majstorović
Danica V. Bajuk-Bogdanović
Ferenc T. Pastor
Slavko V. Mentus

Abstract

Nekoliko istrošenih komercijalnih Li-jonskih baterija reciklirano je relativno brzim, ekono­mičnim i jednostavnim postupkom. Posle mehaničkog rastavljanja komponenti komercijal­nih baterija sa Li(Co–Mn–Ni)O2 kao katodnim materijalom, ispitana su tri načina odvajanja katodnog materijala od Al kolektora: 1. rastvaranjem Al podloge u alkalnoj sredini, 2. ispi­ranje pomoću rastvarača N-metilpirolidona i 3. termičkim razaranjem veziva na 700 °C. U pogledu prinosa datog materijala postupak rastvaranja u alkalnoj sredini se pokazao kao najefikasniji. Hemijski sastav pojedinačnih komponenti baterija (košuljice, Al/Cu kolektora, katodnog materijala,...) određen je atomskom apsorpcionom spektrometrijom, pri čemu su ispitivane komponente prethodno prevedene u stanje rastvora. Nakon odvajanja katodnog materijala i prevođenja u stanje nitratnog rastvora ponovo je izvršena sinteza metodom sagorevanja citratnog gela. Dobijeni proizvod je, nakon žarenja na 750 °C, karakterisan metodama difrakcije X-zraka i ramanske spektroskopije. Dobijen je proizvod stehiomet­rijskog sastava LiCo0,59Mn0,26Ni0,15O2, heksagonalne slojevite strukture tipa α-NaFeO2. Funkcionalnost resintetisanog materijala ispitana je u 1 M rastvoru LiClO4 u propilen-kar­bonatu, galvanostatskim punjenjem i pražnjenjem, pri gustini struje od 0,7 C. Reciklirani materijal pokazuje relativno dobre kapacitete punjenja i pražnjenja koji iznose 94,9 i 64,8 mA h g–1, redom.

Article Details

How to Cite
[1]
J. V. Senćanski, “Reciklaža katodnog materijala LiCo0,59Mn0,26Ni0,15O2 iz istrošenih litijum-jonskih baterija metodom sagorevanja citratnog gela”, Hem Ind, vol. 71, no. 3, pp. 211–220, Jul. 2017, doi: 10.2298/HEMIND160418031S.
Section
-

How to Cite

[1]
J. V. Senćanski, “Reciklaža katodnog materijala LiCo0,59Mn0,26Ni0,15O2 iz istrošenih litijum-jonskih baterija metodom sagorevanja citratnog gela”, Hem Ind, vol. 71, no. 3, pp. 211–220, Jul. 2017, doi: 10.2298/HEMIND160418031S.

References

L. Yang, Guoxi, Y. Xia, Recovery of Co, Mn, Ni and Li from spent lithium batteries for the preparation of LiNixCoyMnzO2 cathode materials, Ceramics Int. 41 (2015) 11498–11503.

X. Zhang, H. Cao, Y, Xie, P. Ning, H. An, H. You, F, Nawaz, A closed-loop proces for recycling LiNi1/3Co1/3Mn1/3 from the cathode scraps of lithium batteries: Process optimization and kinetics analysis, Sep. Purif. Technol. 150 (2015) 186–195.

J. Dewulf, G. Van der Vorst, K. Denturck, H. Van Langenhove, W. Ghyoot, J. Tytgat, K. Vandeputte, Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings, Resour. Conserv. Recycl. 54 (2010) 229–234.

J. Xu, H.R. Thomas, R.W. Francis, K.R. Lum, J. Wang, B. Liang, A review of processes and technologies for the recycling of lithium-ion secondary batteries, J. Power Sources 177 (2008) 512–527.

T.G. Maschler, B. Friedrich, R. Weyh, H. Heegn, M. Rutz, Development of a recycling process for Li-ion batteries, J. Power Sources 207 (2012) 173–182.

X. Zeng, J. Li, N. Singh, Recycling of spent Li-ion battery: Crytical Review, Crit. Rev. Env. Sci. Tec. 44 (2014) 1129–1165.

G. Dorella, M.B. Mansur, A study of the separation of cobalt from spent Li.ion battery residues, J. Power Sources 170 (2007) 210–215.

C.G.P. Nayaka, K.V. Pai, G. Santhosh, J. Manjanna, Dissolution of cathode active material of spent Li-ions batteries using tartaric acid and ascorbic acid mixture to recover Co, Hydrometallurgy 161 (2016) 54–57.

A.M. Bernandes, D.C.R. Espinosa, J.A.S. Tenório, Recycling of batteries: a review of current processes and technologies, J. Power Sources 130 (2004) 291–298.

D.C.R. Espinosa, A.M. Bernardes, J.A.S. Tenório, An overview on the current processes for the recycling of batteries, J. Power Sources 135 (2004) 311–319.

C.K. Lee, K.I. Rhee, Preparation of LiCoO2 from spent lithium-ion batteries, J. Power Sources 109 (2002) 17–21.

X. Zhang, Y. Xie, H. Cao, F. Nawaz, Y. Zhang, A novel process for recycling and resynthesizing LiNi1/3Co1/3Mn1/3O2 from the cathode scraps intended for lithium-ion batteries, Waste Manage. 34 (2014) 1715–1724.

L.-P. He, S.-Y. Sun, X.-F. Song, J.-G. Yu, Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning, Waste Manage. 46 (2015) 523–528.

D. Song, X. Wang, E. Zhou, P. Hou, F. Guo, L. Zhang, Recovery and heat treatment of the LiNi1/3Co1/3Mn1/3O2 cathode scrap material for lithium ion battery, J. Power Sources 232 (2013) 348–352.

J. Nan, D. Han, X. Zuo, Recovery of metal values from spent batteries with chemical deposition and solvent extraction, J. Power Sources 152 (2005) 278–284.

H. Nie, L. Xu, D. Song, J. Song, X. Shi, X. Wang, L. Zhang, Z. Yuan, LiCoO2: recycling from spent batteries and regeneration with solid state synthesis, Green. Chem. 17 (2015) 1275–1280.

D.-S. Kim, J.-S. Sohn, C.-K. Lee, J.-H. Lee, L.-S. Han, Y. Lee, Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium ion rechargeable batteries, J. Power Sources 132 (2004) 145–149.

Y. Weng, S. Xu, G, Huang, C. Jiang, Synthesis and performance of Li[Ni1/3Co1/3Mn1/3)1–xMgx]O2 prepared from spent lithium ion batteries, J. Hazard. Mater. 246–247 (2013) 163–172.

M.J. Ganter, B.J. Landi, C.W. Babbit, A.Anctil, G. Gaustad, Cathode refunctionalization as a lithium ion battery recycling alternative, J. Power Sources 256 (2014) 274–280.

J. Huang, H. Zhuang, W.L. Li, Synthesis and characterization of nano crystalline BaFe12O19 powders by low temperature combustion, Mat. Res. Bull. 38 (2003) 149–159.

B. Malecka, A. Lacz, E. Drozdz, A. Malecki, Thermal decomposition of d.metal nitrates supported on alumina, J. Therm. Anal. Calorim. 119 (2015) 1053–1061.

M. Mišović, K. Delijić, D. Milić, S. Fatić, Legure aluminijima serije 8xxx namijenjena za valjanje folije, Metalurgija 9 (2003) 163–170.

E. Samuel, A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, Intermetallic phases in Al-Si based cast alloys: new perspective, Int. J. Cast Metal. Res. 27 (2014) 107–114.

R. Michalik, The effect of modification with rare earth elements on ZnAl22Cu3 Alloy structure and mechanical properties, Archives Metallurgy Mater. 58 (2013) 49–53.

Y.-H. Cai, R.-G. Liang, Z.-P. Su, J.-S. Zhang, Microstructure of spray formed Al–Zn–Mg–Cu alloy with Mn addition, T. Nonferr. Metal. Soc. 21 (2011) 9–14.

J. Choi, A. Manthiram, Role of Chemical and Structural Stabilites on the Electrochemical properties of Layered LiNi1/3Mn1/3Co1/3O2 cathode, J. Electrochem. Soc. 152(9) (2005) A1714–A1718.

X. Luo, X. Wang, Li Liao, X. Wang, S. Gamboa, P.J. Sebastian, Effects of synthesis conditions on the structural and electrochemical properties of layered Li[Ni1/3Co1/3Mn1/3)O2 cathode material via the hydroxide co-precipitation method LIB SCITECH, J. Power Sources 161 (2006) 601–605.

M. Kerlau, M. Marcinek, V. Srinivasan, R.M. Kostecki, Studies of local degradation phenomena in composite cathodes for lithium-ion batteries, Electrochim. Acta 52 (2007) 5422–5429.

Y. Fu, X. Li, X. Sun, X. Wang, D. Liu, D. He, Self-sup-porting Co3O4 with lemongrass-like morphology as a high performance anode material for lithium ion batteries, J. Mater. Chem. 22(34) 17429–17431.

K.M. Shaju, G.V. Subba Rao, B.V.R. Chowdari, Performance of layered Li (Ni1/3Co1/3Mn1/3)O2 kao katoda za Li-jonske baterije, Electrochim. Acta 48 (2002) 145–151.

S.-C. Yin, Y.-H, Rho, I. Swainson, L.F. Nazar, X-ray/Neu-ron Diffraction and Electrochemical Studies of Lithium De/Re-Intercalation in Li1–xCo1/3Ni1/3Mn1/3O2 (x = 01), Chem. Mater. 18 (2006) 1901–1910.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)