Harnessing the potential of selected plant pigments in dye-sensitized solar cells: the current status Let's refresh our knowledge

Main Article Content

Anita M. Lazić
Luka M. Matović
Nemanja P. Trišović
Nataša V. Valentić

Abstract

Dye-sensitized solar cells (DSSC) represent the third generation of solar cells which have revolutionized sustainable energy research owing to the fact that they act as a renewable energy source integrated with employment of environmentally benign light-harvesting pigments as sensitizers and cost-effective materials for manufacture. This review compiles the exploration of plant pigments with a potential for use as photosensitizers in solar cells, focusing on their isolation and the factors that affect their physicochemical properties to identify those pigments providing the optimum performance. Newly reported considerations of flavonoids, anthocyanins, carotenoids, betalains, and chlorophyll, as light-harvesting pigments are summarized. Further, outcomes of the solar cell efficiency obtained by various semiconductors and types of electrolytes are compared and discussed. The main goal of this review is to highlight the significance of naturally obtained light-harvesting pigments, which will be used as the promising class of sensitizers in DSSC.

Article Details

Section

Let's refresh our knowledge

How to Cite

[1]
A. M. Lazić, L. M. Matović, N. P. Trišović, and N. V. Valentić, “Harnessing the potential of selected plant pigments in dye-sensitized solar cells: the current status: Let’s refresh our knowledge”, Hem Ind, Apr. 2025, doi: 10.2298/HEMIND250218007L.

Funding data

References

[1] Yahya M, Bouziani A, Ocak C, Seferoğlu Z, Sillanpää M. Organic/metal-organic photosensitizers for dye-sensitized solar cells (DSSC): Recent developments, new trends, and future perceptions. Dyes Pigments. 2021; 192: 109227. https://doi.org/10.1016/j.dyepig.2021.109227

[2] Bist A, Chatterjee S. Review on Efficiency Enhancement Using Natural Extract Mediated Dye-Sensitized Solar Cell for Sustainable Photovoltaics. Energy Technol.2021; 9(8):2001058. https://doi.org/10.1002/ente.202001058

[3] Sharma K, Sharma V, Sharma S. Dye-Sensitized Solar Cells: Fundamentals and Current Status.Nanoscale Res Lett. 2018; 13: 381. https://doi.org/10.1186/s11671-018-2760-6

[4] Pastuszak J, Węgierek P. Photovoltaic cell generations and current research directions for their development. Materials. 2022; 15: 5542. https://dx.doi.org/10.3390/ma15165542

[5] Luceño-Sánchez JA, Díez-Pascual AM,Peña Capilla R. Materials for Photovoltaics: State of Art and Recent Developments. Int J Mol Sci. 2019; 20: 976. https://dx.doi.org/10.3390/ijms20040976

[6] Dambhare MV, Butey B, Moharil SV. Solar photovoltaic technology: A review of different types of solar cells and its future trends. J Phys: Conf Ser. 2021; 1913: 012053. https://dx.doi.org/10.1088/1742-6596/1913/1/012053

[7] Shalini S, Balasundara Prabhu R, Prasanna S, Mallick TK, Senthilarasu S. Review on natural dye sensitized solar cells: Operation, materials and methods. Renew Sustain Energy Rev. 2015; 51(C): 1306-1325. https://doi.org/10.1016/j.rser.2015.07.052

[8] Cherepy NJ, Smestad GP, Gratzel M, Zhang JZ. Ultrafast electron injection: implications for a photo electrochemical cell utilizing an anthocyanin dyesensitized TiO2 nanocrystalline electrode. J Phys Chem B. 1997; 101(45): 9342-9351. https://doi.org/10.1021/jp972197w

[9] Olea A, Ponce G, Sebastian PJ. Electron transfer via organic dyes for solar conversion. J Sol Energy Mater Sol Cells. 1997; 59: 137-143. https://doi.org/10.1016/S0927-0248(99)00038-0

[10] Garcia CG, Polo AS, Iha NYM. Fruit extracts and ruthenium polypyridinic dyes for sensitization of TiO2 in photo electrochemical solar cells. J Photochem Photobiol. 2003; 160: 87-91. https://doi.org/10.1016/S1010-6030(03)00225-9

[11] Amogne NY, Ayele DW, Tsigie YA. Recent advances in anthocyanin dyes extracted from plants for dye sensitized solar cell. Mater Renew Sustain Energy. 2020;9: 23. https://doi.org/10.1007/s40243-020-00183-5

[12] Mehmood U, Rahman S, Harrabi K, Hussein IA, Reddy BVS. Recent advances in dye sensitized solar cells. Adv Mater Sci Eng. 2014: 974782. http://dx.doi.org/10.1155/2014/974782

[13] Mahajan U, Prajapat K, Dhonde M, Sahu K, Shirage PM. Natural dyes for dye-sensitized solar cells (DSSCs): An overview of extraction, characterization and performance. Nano-Struct Nano-Objects. 2024; 37: 101111. https://doi.org/10.1016/j.nanoso.2024.101111

[14] Prajapat K, Mahajan U, Sahu K, Dhonde M, Shirage PM. The evolution of natural dye-sensitized solar cells: Current advances and future outlook. Sol Energy. 2024; 284: 113081. https://doi.org/10.1016/j.solener.2024.113081

[15] Malhotra SS, Ahmed M, Gupta MK, Ansari. Metal-free and natural dye-sensitized solar cells: recent advancements and future perspectives. Sustain Energ Fuels. 2024; 8: 4127. https://doi.org/10.1039/D4SE00406J

[16] Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. Sci World J.2013; 2013: 162750. http://dx.doi.org/10.1155/2013/162750

[17] Dias MC, Pinto DCGA, Silva AMS. Plant flavonoids: Chemical characteristics and biological activity. Molecules. 2021;26: 5377. https://doi.org/10.3390/molecules26175377

[18] Bone K, Mills S. Principles and practice of phytotherapy: modern herbal medicine. 2nd ed., Elsevier Ltd.; 2013. ISBN: 978-0-443-06992-5

[19] Šamec D, Karalija E, Šola I, Vujčić Bok V, Salopek-Sondi B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants. 2021; 10: 118. https://doi.org/10.3390/plants10010118

[20] Corradini E, Foglia P, Giansanti P, Gubbiotti R, Samperi R, Laganà A. Flavonoids: Chemical properties and analytical methodologies of identification and quantitation in foods and plants. Nat Prod Res. 2011; 25(5): 469-495. http://dx.doi.org/10.1080/14786419.2010.482054

[21] Roy A, Khan A, Alghamdi S, Rajab BS, Babalghith AO, Alshahrani MY, Islam S, Islam MdR. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. Bio Med Res Int. 2022; 2022: 5445291. https://doi.org/10.1155/2022/5445291

[22] DuToit K, Drewes SE, Bodenstein J. The chemical structures, plant origins, ethnobotany and biological activities of homoisoflavanones. Nat Prod Res. 2010; 24(2): 457-490. https://doi.org/10.1080/14786410903335174

[23] Castelli MV, López SN. Homoisoflavonoids: Occurrence, Biosynthesis, and Biological Activity. In: Rahman A, eds. Studies in Natural Products Chemistry. Vol. 54. Elsevier; 2017: 315-354. https://doi.org/10.1016/B978-0-444-63929-5.00009-7

[24] Devi M, Saini RK, Shrivastava S. Photovoltaic analysis of fabricated dsscs based on natural colorants. Rasayan J Chem. 2021; 14(2): 1175-1182. http://dx.doi.org/10.31788/RJC.2021.1426149

[25] Surana K, Bhattacharya B, Majumder S. Extraction of yellow fluorescent Caesalpinia sappan L. dye for photovoltaic application. Opt Mater (Amst). 2021; 119: 111347. https://doi.org/10.1016/j.optmat.2021.111347

[26] Błaszczyk A, Joachimiak-Lechman K, Sady S, Tański T, Szindler M, Drygała A. Environmental performance of dye-sensitized solar cells based on natural dyes. Sol Energy.2021; 215: 346-355. https://doi.org/10.1016/j.solener.2020.12.040

[27] John Peter I, Vijaya S, Anandan S, Ramachandran K, Nithiananthi P. Alternative low-cost photon sensitizer for dye-sensitized solar cells using less explored natural fabric dyes. Int J Energy Res. 2021; 45: 7764-7782. https://doi.org/10.1002/er.6360

[28] Djibrilla M, Sanda A, Badu M, Awudza JAM, Boadi N. Development of TiO2-based dye-sensitized solar cells using natural dyes extracted from some plant-based materials nanocrystal synthesis view project dye-sensitized solar cells.Chem Int.2021; 7(1): 9-20. https://doi.org/10.5281/zenodo.4018012

[29] Ayaz M, Kasi JK, Kasi AK, Bokhari M, Sohail M, Ullah S. Natural plant trifolium pratense, mirabilis jalapa and bassia scoparia extract used as photosensitizer in dye-sensitized solar cell. Iran J Chem Chem Eng. 2021; 40(3): 872-880. https://doi.org/10.30492/ijcce.2020.38359

[30] Nasyori A, Noor FA. The Effects of the Concentration of Red and Yellow Gambier Fruit Dyes on the Short-Circuit Photocurrent in Dye-Sensitised Solar Cells. J Phys Conf Ser. 2021; 1811: 012067. https://doi.org/10.1088/1742-6596/1811/1/012067

[31] Senthamarai R, Madurai Ramakrishnan V, Palanisamy B, Kulandhaivel S. Synthesis of TiO2 nanostructures by green approach as photoanodes for dye-sensitized solar cells. Int J Energy Res. 2021; 45: 3089-3096. https://doi.org/10.1002/er.6002

[32] Bharathi Devi S, Prakash Babu D, Naresh Kumar S, Ponkumar S. Microwave radiation induced performance modifications of dye-sensitized solar cells. Radiat Eff Defects Solids. 2021; 176(8): 481-492. https://doi.org/10.1080/10420150.2021.1871734

[33] Ben Karoui M, Saadaoui S, Torchani A, Gharbi R. Effect of Natural Sensitizers Anchoring to Nanoporous TiO2 on Performance of Dye-Sensitized Solar Cells. J Electron Mater. 2021; 50: 4797-4805. https://doi.org/10.1007/s11664-021-09010-7

[34] Peymannia M, Gharanjig K, Arabi AM. Effect of zinc oxide quantum dots on the photovoltaic properties of natural dye-sensitized solar cells. Int J Energy Res. 2021; 45: 4170-4183. https://doi.org/10.1002/er.6082

[35] Mattioli R, Francioso A, Mosca L, Silva P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules. 2020; 25(17): 3809. https://doi.org/10.3390/molecules25173809

[36] Castañeda-Ovando A, Pacheco-Hernández M de L, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA. Chemical studies of anthocyanins: A review. Food Chem. 2009; 113: 859-871. https://dx.doi.org/10.1016/j.foodchem.2008.09.001

[37] Enaru B, Dretcanu G, Pop TD, Stănilă A, Diaconeasa Z. Anthocyanins: Factors affecting their stability and degradation. Antioxidants. 2021; 10: 1967.https://doi.org/10.3390/antiox10121967

[38] Golshan M, Osfouri S, Azin R, Jalali T, Moheimani NR. Co-sensitization of natural and low-cost dyes for efficient panchromatic light-harvesting using dye-sensitized solar cells. J Photochem Photobiol A. 2021; 417: 113345. https://doi.org/10.1016/j.jphotochem.2021.113345

[39] Kamarulzaman NH, Salleh H, Dagang AN, Ghazali MSM, Ishak N, Abdullah M, Muda SM. Eco-Friendly Hybrid Solar Cells using Eugenia Claviflora as New Alternatives Sensitizer to TiO2/PEDOT:PSS. IOPConf Ser Mater Sci Eng. 2021; 1176: 012047. https://doi.org/10.1088/1757-899X/1176/1/012047

[40] Erande KB, Hawaldar PY, Suryawanshi SR, Babar BM, Mohite AA, Shelke HD, Nipane SV, Pawa UT. Extraction of natural dye (specifically anthocyanin) from pomegranate fruit source and their subsequent use in DSSC. Mater Today Proc. 2021; 43(4): 2716-2720. https://doi.org/10.1016/j.matpr.2020.06.357

[41] PrabavathyN, Balasundaraprabhu R, Arne S, Kristoffersen G,BalajiS,PrasannaK, SivakumaranMD, KannanSvein R, Dhayalan Velauthapillai E. Enhanced photostability of anthocyanin dye for increased efficiency in natural dye sensitized solar cells. Optik. 2021; 227: 166053. https://doi.org/10.1016/j.ijleo.2020.166053

[42] Gasga K. Dye and activated carbon from Canarium ovatumEngl. as photosensitizer and counter electrode for Titania-based dye sensitized solar cell. J Phys Conf Ser. 2021; 1882: 012007. https://doi.org/10.1088/1742-6596/1882/1/012007

[43] Huamán AA, Celestino MR, Quintana ME. Theoretical and experimental study of solar cells based on nanostructured films of TiO2 sensitized with natural dyes extracted from Zea mays and Bixa orellana. RSC Adv. 2021; 11: 9086-9097. https://doi.org/10.1039/d1ra01043c

[44] Faraz SM, Mazhar M, Shah W, Noor H, Awan ZH, Sayyad MH. Comparative study of impedance spectroscopy and photovoltaic properties of metallic and natural dye based dye sensitized solar cells. Phys B. 2021; 602: 412567. https://doi.org/10.1016/j.physb.2020.412567

[45] Joseph S, Paul Winston AJP, Muthupandi S, Shobha P, Margaret SM, Sagayaraj P. Performance of Natural Dye Extracted from Annatto, Black Plum, Turmeric, Red Spinach, and Cactus as Photosensitizers in TiO2NP/TiNT Composites for Solar Cell Applications. J Nanomater. 2021; 2021: 5540219. https://doi.org/10.1155/2021/5540219

[46] Singh S, Maurya IC, Sharma S, Kushwaha SPS, Srivastava P, Bahadur L. Application of new natural dyes extracted from Nasturtium flowers (Tropaeolum majus) as photosensitizer in dye-sensitized solar cells. Optik. 2021; 243: 167331. https://doi.org/10.1016/j.ijleo.2021.167331

[47] Fernandes AS, Nascimento TCD, Jacob-Lopes E, Rosso VVD, Zepka LQ. A brief overview on its structure, biosynthesis, synthesis, and applications. In: Zepka LQ, E. Jacob-Lopes E, Rosso VVD, eds. Progress in Carotenoid Research. InTech; 2018: 1-16. https://doi.org/10.5772/intechopen.79542

[48] Mezzomo N, Ferreira SRS. Carotenoids functionality, sources, and processing by supercritical technology. J Chem. 2016; 2016: 3164312. http://dx.doi.org/10.1155/2016/3164312

[49] Maoka T. Carotenoids as natural functional pigments. J Nat Med. 2019; 74(1): 1-16. https://doi.org/10.1007/s11418-019-01364-x

[50] Ashenafi EL, Nyman MC, Jacob T. Shelley JT, Mattson NS. Spectral properties and stability of selected carotenoid and chlorophyll compounds in different solvent systems. Food Chem Adv. 2023; 2: 100178. https://doi.org/10.1016/j.focha.2022.100178

[51] Namitha KK, Negi PS. Chemistry and Biotechnology of Carotenoids. Crit Rev Food Sci Nutr. 2010; 50: 728-760. https://doi.org/10.1080/10408398.2010.499811

[52] Takaichi S. Carotenoids in Algae: Distributions, Biosyntheses and Functions. Mar Drugs. 2011; 9: 1101-1118. https://doi.org/10.3390/md9061101

[53] Varghese R, Buragohain T, Banerjee I, Mukherjee R, Penshanwar SN, Agasti S, Ramamoorthy S. The apocarotenoid production in microbial biofactories. J Biotech. 2023; 374: 5-16. https://doi.org/10.1016/j.jbiotec.2023.07.009

[54] Hou X, Rivers J, León P, McQuinn RP, Pogson BJ. Synthesis and Function of Apocarotenoid Signals in Plants. Trends Plant Sci. 2016; 21(9): 792-803. https://doi.org/10.1016/j.tplants.2016.06.001

[55] Carballo-Uicab VM, C´ardenas-Conejo Y, Vallejo-Cardona AA, Aguilar-Espinosa M, Rodríguez-Campos J, Serrano-Posada H, Narv´aez-Zapata JA, V´azquez-Flota F, Rivera-Madrid R. Isolation and functional characterization of two dioxygenases putatively involved in bixin biosynthesis in annatto (Bixa orellana L.). PeerJ. 2019; 7: e7064. https://doi.org/10.7717/peerj.7064

[56] Alwis DDDH, Chandrika UG, Jayaweera PM. Photostability of apocarotenoids on surface of TiO2 semiconductor nanoparticles. J Photochem Photobiol A Chem. 2021; 407: 113061. https://doi.org/10.1016/j.jphotochem.2020.113061

[57] Shakunthala NM. Natural Dyes as a Photosensitizer in Dye Sensitized Solar Cells- Review. J Sci Res. 2021; 65(8): 59-63. https://doi.org/10.37398/JSR.2021.650813

[58] Datte JK, Yapi SA, Kouassi LK, Douhoré GYT. Effect of TiO2 Photoanode Films on the Performance of Dye Sensitized Solar Cell with Rauvolfia Vomitoria Fruit Extract. Am J Mater Sci Eng. 2021; 9(1): 1-5. https://pubs.sciepub.com/ajmse/9/1/1/index.html

[59] Coy-Barrera, E. Analysis of betalains (betacyanins and betaxanthins). In: Sanches Silva A, Nabavi SF, Saeedi M, Nabavi SM, ed. Recent Advances in Natural Products Analysis.Elsevier; 2020: 593-619. https://doi.org/10.1016/B978-0-12-816455-6.00017-2

[60] Sadowska-Bartosz I, Bartosz G. Biological properties and applications of betalains. Molecules. 2021; 26: 2520. https://doi.org/10.3390/molecules26092520

[61] Slimen IB, Najar T, Abderrabba M. Chemical and antioxidant properties of betalains. J Agric Food Chem. 2017; 65: 675-689. https://doi.org/10.1021/acs.jafc.6b04208

[62] Azeredo HMC. Betalains: Properties, sources, applications, and stability. Int J Food Sci Technol. 2009;44:2365-2376. https://doi.org/10.1111/j.1365-2621.2007.01668.x

[63] Lopera A, V´elez E, Restrepo J, Polo V. A DFT study on natural sensitizers with donor-π-acceptor architecture based on 1,7-diazaheptametine for applications in Dye-Sensitized Solar Cells (DSSC). Comput Theor Chem. 2024; 1232: 114450. https://doi.org/10.1016/j.comptc.2023.114450

[64] Bharathi Devi S, Prakash Babu D, Naresh Kumar S. Effect of microwave annealing on the performance of dye sensitized solar cell with Beta vulgaris as natural dye. Spectrosc Lett. 2021; 54(5): 352-359. https://doi.org/10.1080/00387010.2021.1931793

[65] Soni K, Sheikh A, Jain V, Lakshmi N. Application of Natural Betalain Dye from Beetroot for Improved Efficiency in Dye Sensitized Solar Cell. IOP Conf Ser Mater Sci Eng. 2021; 1187: 012005. https://doi.org/10.1088/1757-899X/1187/1/012005

[66] Li Y, He N, Hou J, Xu L, Liu C, Zhang J, Wang Q, Zhang X, Wu X. Factors influencing leaf chlorophyll content in natural forests at the biome scale. Front Ecol Evol. 2018; 6: 64. https://doi.org/10.3389/fevo.2018.00064

[67] Solymosi K, Mysliwa-Kurdziel B. Chlorophylls and their Derivatives Used in Food Industry and Medicine. Mini Rev Med Chem. 2017; 17(13): 1194-1222. https://doi.org/10.2174/1389557516666161004161411

[68] Martins T, Novo Barros A, Rosa E, Antunes L. Enhancing Health Benefits through Chlorophylls and Chlorophyll-Rich Agro-Food: A Comprehensive Review. Molecules.2023; 28(14): 5344. https://doi.org/10.3390/molecules28145344

[69] Pelletier PJ, Caventou JB, Sur la matière verte des feuilles. Ann Chim Phys. 1818; 9: 194-196.

[70] Richard Willstätter - Facts. NobelPrize.org. Nobel Prize Outreach 2025. https://www.nobelprize.org/prizes/chemistry/1915/willstatter/facts/. Accessed February 22, 2025.

[71] Hans Fischer - Facts. NobelPrize.org. Nobel Prize Outreach 2025. https://www.nobelprize.org/prizes/chemistry/1930/fischer/facts/. Accessed February 22, 2025.

[72] Robert B. Woodward - Biographical. NobelPrize.org. Nobel Prize Outreach 2025. https://www.nobelprize.org/prizes/chemistry/1965/woodward/biographical/. Accessed February 22, 2025.

[73] Tanaka R, Tanaka A. Chlorophyll cycle regulates the construction and destruction of thelight-harvesting complexes. Biochim Biophys Acta. 2011; 1807: 968-976. https://doi.org/10.1016/j.bbabio.2011.01.002

[74] Herrera M, Viera I, Roca M. Study of the authentic composition of the novel green foods: Food colorants and coloring foods. Food Res Int. 2023; 170: 112974. https://doi.org/10.1016/j.foodres.2023.112974

[75] Mejica GFCM, Ramaraj R , Unpaprom Y. Natural dye (chlorophyll, anthocyanin, carotenoid, flavonoid) photosensitizer for dye-sensitized solar cell: A review. Maejo Int J Energ Environ Comm. 2022; 4-1: 12-22. https://doi.org/10.54279/mijeec.v4i1.247970

[76] Cari C, Kurniawan D, Supriyanto A. The Effect of ZnO and TiO2with Natural Dye of Broccoli (Brassia oleracea var. italica) on Dye-Sensitized Solar Cell (DSSC). J Phys Conf Ser. 2021;1842: 012055. https://doi.org/10.1088/1742-6596/1842/1/012055

[77] Kurniawan D, Cari C, Supriyanto A. Comparison of Nanocomposite ZnO/TiO2 Composition Dye-Sensitized Solar Cell (DSSC) with Natural Dye Leaves of Green Mustard (Brassica rapa). J Phys Conf Ser. 2021;1842: 012056. https://doi.org/10.1088/1742-6596/1842/1/012056

[78] Arjun Kumar B, Ramalingam G, Karthigaimuthu D, Elangovan T, Vetrivelan V. Fabrication of natural dye sensitized solar cell using tridax procumbens leaf and beetroot extract mixer as a sensitizer. Mater Today Proc. 2021;49(7):2541-2545. https://doi.org/10.1016/j.matpr.2021.04.221

[79] Mensah-Darkwa K, Agyemang FO, Yeboah D, Akromah S. Dye-sensitized solar cells based on graphene oxide and natural plant dye extract. Mater Today Proc. 2021;38(2):514-521. https://doi.org/10.1016/j.matpr.2020.02.391

[80] Siregar N , Motlan, Panggabean JH, Sirait M, Rajagukguk J , Gultom NS , Kedir Sabir FK. Fabrication of Dye-Sensitized Solar Cells (DSSC) Using Mg-Doped ZnO as Photoanode and Extract of Rose Myrtle (Rhodomyrtus tomentosa) as Natural Dye.Int J Photoenergy. 2021; 2021. https://doi.org/10.1155/2021/4033692

[81] Anoua R, Lifi H, Touhtouh S, El Jouad M, Hajjaji A, Bakasse M, Plociennik P, Zawadzka A.Optical and morphological properties of Curcuma longa dye for dye-sensitized solar cells. Environ Sci Pollut Res. 2021;28:57860-57871. https://doi.org/10.1007/s11356-021-14551-9

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)