Circular chemistry in response to the phosphate crisis Technical paper

Main Article Content

Alija Salkunić
https://orcid.org/0000-0002-5372-1018
Ljiljana Stanojević
Nikola Belobaba
Slavica Bogdanović
Bajro Salkunić
https://orcid.org/0009-0007-5827-197X

Abstract

Raw phosphate is used as a raw material to produce phosphorus-based fertilizers, and its supply shortage could negatively impact the global food supply. The European Commission has classified this raw material as critical in terms of estimated stocks. For years, new resources have been explored as substitutes for the phosphate component in fertilizer production and other phosphorus-containing products. An alternative has emerged in the possibility of using ash obtained from incineration of sludge generated in the process of municipal wastewater treatment. This work presents analyses of such ash as a case study for determination of potentials for partial replacement of raw phosphates in mineral fertilizers. It was shown that the ash contains high P2O5 content, which indicates this type of sludge as a promising alternative raw material in fertilizer production. The obtained results are significant for the Republic of Serbia as it is planned to construct over 300 wastewater treatment plants by 2041, with projection of about 135,000 t/year sludge generation. The presented analysis of ash obtained from this type of sludge justifies construction of incineration plants as the one planned in Prahovo, Serbia, which will by waste treatment contribute to circular economy and chemistry. 

Article Details

Section

Special Issue: New methods in the process industry

How to Cite

[1]
A. Salkunić, L. . Stanojević, N. Belobaba, S. Bogdanović, and B. Salkunić, “Circular chemistry in response to the phosphate crisis: Technical paper”, Hem Ind, Dec. 2024, doi: 10.2298/HEMIND240414022S.

References

[1] Kovačić M. Tehnološke zabilješke: Predstoji li nam fosforna kriza? Kem Ind. 2020; 69: 52-53 https://hrcak.srce.hr/232591

[2] Boskey AL. Bone composition: relationship to bone fragility and antiosteoporotic drug effects. Bonekey Rep. 2013; 2: 447 https://doi.org/10.1038/bonekey.2013.181

[3] Childers DL, Corman J, Edwards M, Elser JJ. Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle. Bioscience. 2011; 61: 117-124. https://doi.org/10.1525/bio.2011.61.2.6

[4] Van Kauwenbergh SJ, Stewart M, Mikkelsen R. World reserves of phosphate rock - a dynamic and unfolding story. Better Crops. 2013; 97: 18-20 http://www.ipni.net/publication/bettercrops.nsf/0/C3AB0523A890EBC685257BD50055E09A/$FILE/BC3%202013%20-%20p18.pdf

[5] Salkunić A, Vuković J, Smiljanić S. Review of Technologies for the Recovery of Phosphorus from Waste Streams. Chem Biochem Eng Q. 2022; 36: 91-116 https://doi.org/10.15255/CABEQ.2022.2066

[6] Bogdanović D. Hemizacija-potrošnja mineralnih đubriva u proizvodnji hrane. Letopis naučnih radova Poljoprivrednog fakulteta. 2010; 34: 32-45 https://scindeks-clanci.ceon.rs/data/pdf/0546-8264/2010/0546-82641001032B.pdf

[7] Bogdanović D. Mineralna đubriva i đubrenje, Novi Sad: Univerzitet u Novom Sadu, Poljoprivredni fakultet; 2010 http://www.agroekologija.com/agri-conto-cleen/wp-content/uploads/2015/02/Mineralna_djubriva.pdf

[8] Vaccari DA. Phosphorus: a looming crisis. Sci Am. 2009; 300: 54-59 https://doi.org/10.1038/scientificamerican0609-54

[9] Daneshgar S, Callegari A, Capodaglio AG, Vaccari D. The potential phosphorus crisis: resource conservation and possible escape technologies: a review. Resources. 2018; 7: 37 https://doi.org/10.3390/resources7020037

[10] Cooper J, Lombardi R, Boardman D, Carliell-Marquet C. The future distribution and production of global phosphate rock reserves. Resour Conserv Recycl. 2011; 57: 78-86. https://doi.org/10.1016/j.resconrec.2011.09.009

[11] European Commission. European Critical Raw Materials Act (2023) https://single-market-economy.ec.europa.eu/publications/european-critical-raw-materials-act_en (23. 4. 2023.)

[12] Kümmerer K, Clark JH, Zuin VG. Rethinking chemistry for a circular economy. Science. 2020; 367: 369-370 https://doi.org/10.1126/science.aba4979

[13] Keijer T, Bakker V, Slootweg JC. Circular chemistry to enable a circular economy. Nature Chem. 2019; 11: 190-195 https://doi.org/10.1038/s41557-019-0226-9

[14] Guarieiro LL, Rezende MJ, Barbosa WT, Rocha GOD, Pereira PAP, Fernandes DR, Lopes WA, Mota CJA, Andrade JBD. Reaching Circular Economy through Circular Chemistry: The Basis for Sustainable Development. J Braz Chem Soc. 2022; 33: 1353-1374 https://doi.org/10.21577/0103-5053.20220119

[15] Li R, Yin J, Wang W, Li Y, Zhang Z. (2014). Transformation of phosphorus during drying and roasting of sewage sludge. Waste Manag. 2014; 34: 1211-1216. https://doi.org/10.1016/j.wasman.2014.03.022

[16] Ottosen LM, Kirkelund GM, Jensen PE. Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum. Chemosphere. 2013; 91: 963-969 https://doi.org/10.1016/j.chemosphere.2013.01.101

[17] Cordell D, Rosemarin A, Schreoder JJ, Smit AL. Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options, Chemosphere. 2011; 84: 747-758 https://doi.org/10.1016/j.chemosphere.2011.02.032

[18] Franz M. Phosphate fertilizer from sewage sludge ash (SSA). Waste Manag. 2008; 28: 1809-1818 https://doi.org/10.1016/j.wasman.2007.08.011

[19] Fang L, Wang Q, Li JS, Poon CS, Cheeseman CR, Donatello S, Tsang DC. Feasibility of wet-extraction of phosphorus from incinerated sewage sludge ash (ISSA) for phosphate fertilizer production: A critical review. Crit. Rev. Environ. Sci. Technol. 2021; 51: 939-971 https://doi.org/10.1080/10643389.2020.1740545

[20] Ohtake H, Tsuneda S. Phosphorus recovery and recycling. Springer Singapore, Singapore, 2019 ISBN: 978-981-10-8031-9

[21] Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003 https://eur-lex.europa.eu/eli/reg/2019/1009/oj

[22] Đubriva — Određivanje hlorida u odsustvu organskog materijala, SRPS EN 16195:2013 https://iss.rs/sr_Cyrl/project/show/iss:proj:43774

[23] Određivanje sadržaja fluorida, VM002 (Mineralna đubriva – određivanje fluoride (potenciometrija) izdanje 01 od 10.01.2023. zasnovano na EPA 9214:1996 Potentiometric Determination of Fluoride in Aqueous Samples with Ion-Selective Electrode, Modifikovana u delu pripreme) https://www.epa.gov/hw-sw846/sw-846-test-method-9214-potentiometric-determination-fluoride-aqueous-samples-ion

[24] Đubriva i krečni materijali – Određivanje kadmijuma, hroma, olova i nikla atomskom emisionom spektrometrijom sa induktivno spregnutom plazmom (ICP-AES) nakon rastvaranja carskom vodom, SRPS EN 16319:2016 https://iss.rs/sr_Cyrl/project/show/iss:proj:55067

[25] Đubriva – Određivanje kobalta, bakra, gvožđa, mangana i cinka primenom plamene atomske apsorpcione spektrometrije (FAAS), SRPS EN 16965:2018, https://iss.rs/sr_Cyrl/project/show/iss:proj:59451

[26] Snyder GH. Methods for silicon analysis in plants, soils, and fertilizers. In Studies in plant science 2001; 8: 185-196 https://doi.org/10.1016/S0928-3420(01)80015-X

[27] Đubriva — Određivanje elemenata u tragovima — Određivanje žive tehnikom generisanja pare (VG) nakon rastvaranja carskom vodom, SRPS EN 16320:2014 https://iss.rs/sr_Cyrl/project/show/iss:proj:46690

[28] Određivanje arsena hidridnom tehnikom atomske apsorpcione spektrometrije (HG/AAS), EPA 7061A:1992 https://www.epa.gov/hw-sw846/sw-846-test-method-7061a-arsenic-atomic-absorption-gaseous-hydride

[29] Određivanje selena hidridnom tehnikom atomske apsorpcione spektrometrije (HG/AAS), EPA EPA 7741A https://www.epa.gov/hw-sw846/sw-846-test-method-7741a-selenium-atomic-absorption-gaseous-hydride

[30] Đubriva - Manganometrijsko određivanje ekstrahovanog kalcijuma nakon taloženja u obliku oksalata, SRPS EN 16196:2013 https://iss.rs/sr_Cyrl/project/show/iss:proj:43775

[31] Veštačka đubriva - Određivanje sadržaja kalijuma - Plamenofotometrijska metoda, SRPS H.B8.294:1986 https://iss.rs/sr_Cyrl/project/show/iss:proj:4509

[32] Mineralna đubriva — Ekstrakcija fosfora rastvorljivog u mineralnim kiselinama, SRPS EN 15956:2011 https://iss.rs/sr_Cyrl/project/show/iss:proj:33698

[33] Mineralna đubriva - Određivanje ekstrahovanog fosfora, SRPS EN 15959:2012 https://iss.rs/sr_Cyrl/project/show/iss:proj:40185

[34] Đubriva – Ekstrakcija vodorastvorljivog fosfora, SRPS EN 15958:2012 https://iss.rs/sr_Cyrl/project/show/iss:proj:69700

[35] Mineralna đubriva — Ekstrakcija fosfora rastvorljivog u neutralnom amonijum-citratu, SRPS EN 15957:2011 https://iss.rs/sr_Cyrl/project/show/iss:proj:33699

[36] Čvrsta mineralna đubriva i materije za kalcifikaciju - Određivanje sadržaja vlage - Gravimetrijska metoda sušenjem na (105±2) °C, SRPS EN 12048:2011 https://iss.rs/sr_Cyrl/project/show/iss:proj:29380

[37] Pravilnik o uslovima za razvrstavanje i utvrđivanje kvaliteta sredstava za ishranu bilja, odstupanjima sadržaja hranljivih materija i minimalnim i maksimalnim vrednostima dozvoljenog odstupanja sadržaja hranljivih materija i o sadržini deklaracije i načinu obeležavanja sredstava za ishranu bilja („Sl. glasnik RS”, br. 30/2017 i 31/2018) https://pravno-informacioni-sistem.rs/eli/rep/sgrs/ministarstva/pravilnik/2018/31/6

Most read articles by the same author(s)