The effect of sulfuric acid treatment on physicochemical properties of g-C3N4 and its efficiency for photocatalytic reduction of Cr(VI) Abstract
Main Article Content
Abstract
A great deal of interest is directed towards g-C3N4 (CN) for the photocatalytic reduction of Cr(VI), due to its high stability in acidic conditions and medium band gap (~2,7 eV), but its practical application is limited because of the high recombination rate of electrons and holes. Sulfuric acid treatment is considered as one of the methods for optimizing properties of CN by certain surface and possibly structure modifications which would lead to an increased specific surface area (Sp) and more active sites, anchoring electronegative groups to enhance charge separation, exfoliated bulk CN into the nanosheets, etc. The aim of this research was to investigate the influence of H2SO4 concentration and other experimental conditions (temperature and time) on physicochemical properties and photocatalytic efficiency of CN.
Article Details
Section
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
How to Cite
Funding data
-
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers 451-03-47/2023-01/200287;451-03-47/2023-01/200135 -
Horizon 2020
Grant numbers 952033
References
Patnaik S., Martha S., Madras G., Parida K., The effect of sulfate pre-treatment to improve the deposition of Au-nanoparticles in a gold-modified sulfated g-C3N4 plasmonic photocatalyst towards visible light induced water reduction reaction, Physical Chemistry Chemical Physics, 2016., 18, 28502-28514. https://doi.org/10.1039/C6CP04262G
hang L., Liu D., Guan J., Chen X., Guo X., Zhao F., Hou T., Mu X., Metal-free g-C3N4 photocatalyst by sulfuric acid activation for selective aerobic oxidation of benzyl alcohol under visible light, Materials Research Bulletin, 2014., 59, 84-92. http://dx.doi.org/10.1016/j.materresbull.2014.06.021
Teng Z., Lv H., Wang C., Xue H., Pang H., Wang G., Bandgap engineering of ultrathin graphene-like carbon nitride nanosheets with controllable oxygenous functionalization, Carbon, 2017., 113, 63-75. http://dx.doi.org/10.1016/j.carbon.2016.11.030