Photodegradation of thiophanate-methyl under simulated sunlight by utilization of novel composite photocatalysts Original scientific paper

Main Article Content

Aleksandar Jovanović
https://orcid.org/0000-0001-9867-9282
Mladen D. Bugarčić
https://orcid.org/0000-0002-6119-4414
Miroslav D. Sokić
https://orcid.org/0000-0002-4468-9503
Tanja S. Barudžija
https://orcid.org/0000-0002-9240-9609
Vladimir P. Pavićević
https://orcid.org/0000-0003-2180-0085
Aleksandar D. Marinković
https://orcid.org/0000-0003-3239-5476

Abstract

This work aimed to investigate the influence of modified titanium(IV) oxide by different nanosized particles on photocatalytic capacity to decompose the chosen organic pollutant under simulated sunlight. For that purpose, rutile-phased titanium(IV) oxide (r-TiO2) was decorated with iron vanadate (FeVO4/r-TiO2) and vanadium-substituted goethite
(Fe1-xVxOOH/r-TiO2). The obtained composites were characterized by field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X ray powder diffraction, Brunauer-Emmett-Teller, Fourier transform infrared spectroscopy – attenuated total reflec­tance and ultraviolet–visible diffuse reflectance spectroscopy techniques. Both synthesized photocatalysts showed higher photoactivity than the base r-TiO2 for the degradation of the target contaminant - thiophanate-methyl (2.5 h vs. 5 h). During the tests, parameters like the irradiation time, catalysts amount, and pesticide concentration were systematically investigated. Furthermore, photocatalysts were applied in multicycle degradation tests for examining their effectiveness during exploitation time. Monitoring of the removal rate was performed both by UV/visible spectrometry and high-performance liquid chromatography (HPLC). In order to prove completion of fungicide degradation chemical oxygen demand was measured in the course of the photocatalytic experiment. The final concentration of the observed contaminant in treated samples was under the prescribed legislative level. The fabricated materials displayed great reliability, durability and photocatalytic activity repre­senting good potentials for implementing this process in real wastewater treatment plants.

Article Details

How to Cite
[1]
A. Jovanović, M. . Bugarčić, M. Sokić, T. Barudžija, V. Pavićević, and A. . Marinković, “Photodegradation of thiophanate-methyl under simulated sunlight by utilization of novel composite photocatalysts: Original scientific paper”, Hem Ind, vol. 78, no. 3, pp. 227–240, Jan. 2024, doi: 10.2298/HEMIND230523004J.
Section
Multiphase Systems in Chemical Engineering

How to Cite

[1]
A. Jovanović, M. . Bugarčić, M. Sokić, T. Barudžija, V. Pavićević, and A. . Marinković, “Photodegradation of thiophanate-methyl under simulated sunlight by utilization of novel composite photocatalysts: Original scientific paper”, Hem Ind, vol. 78, no. 3, pp. 227–240, Jan. 2024, doi: 10.2298/HEMIND230523004J.

Funding data

References

Schaider LA, Rodgers KM, Rudel RA. Review of Organic Wastewater Compound Concentrations and Removal in Onsite Wastewater Treatment Systems. Environ Sci Technol. 2017; 51(13): 7304-7317. https://doi.org/10.1021/acs.est.6b04778

Syafrudin M, Kristanti RA, Yuniarto A, Hadibarata T, Rhee J, Al-Onazi WA, Algarni TS, Almarri AH, Al-Mohaimeed AM. Pesticides in drinking water-a review. Int J Environ Res Public Health. 2021; 18(2): 468. https://doi.org/10.3390/ijerph18020468

Hassaan MA, El Nemr A. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egypt J Aquat Res. 2020; 46(3): 207-220. https://doi.org/10.1016/j.ejar.2020.08.007

Jatoi AS, Hashmi Z, Adriyani R, Yuniarto A, Mazari SA, Akhter F, Mubarak NM. Recent trends and future challenges of pesticide removal techniques – A comprehensive review. J Environ Chem Eng. 2021; 9(4): 105571. https://doi.org/10.1016/j.jece.2021.105571

Leong WH, Teh SY, Hossain MM, Nadarajaw T, Zabidi-Hussin Z, Chin SY, Lai KS, Lim SHE. Application, monitoring and adverse effects in pesticide use: The importance of reinforcement of Good Agricultural Practices (GAPs). J Environ Manage. 2020; 260 109987. https://doi.org/10.1016/j.jenvman.2019.109987

Venugopal D, Karunamoorthy P, Beerappa R, Sharma D, Aambikapathy M, Rajasekar K, Gaikwad A, Kondhalkar S. Evaluation of work place pesticide concentration and health complaints among women workers in tea plantation, Southern India. J Expo Sci Environ Epidemiol. 2021; 31(3): 560-570. https://doi.org/10.1038/s41370-020-00284-3

Che X, Huang Y, Zhong K, Jia K, Wei Y, Meng Y, Yuan W, Lu H. Thiophanate-methyl induces notochord toxicity by activating the PI3K-mTOR pathway in zebrafish (Danio rerio) embryos. Environ Pollut. 2023; 318: 120861. https://doi.org/10.1016/j.envpol.2022.120861

Arena M, Auteri D, Barmaz S, Bellisai G, Brancato A, Brocca D, Bura L, Byers H, Chiusolo A, Court Marques D, Crivellente F, De Lentdecker C, Egsmose M, Erdos Z, Fait G, Ferreira L, Goumenou M, Greco L, Ippolito A, Istace F, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Magrans JO, Medina P, Miron I, Molnar T, Nougadere A, Padovani L, Parra Morte JM, Pedersen R, Reich H, Sacchi A, Santos M, Serafimova R, Sharp R, Stanek A, Streissl F, Sturma J, Szentes C, Tarazona J, Terron A, Theobald A, Vagenende B, Verani A, Villamar-Bouza L. Peer review of the pesticide risk assessment of the active substance thiophanate-methyl. EFSA J. 2018; 16(5): e05133. https://doi.org/10.2903/j.efsa.2018.5133

European Commission, Commission Implementing Regulation (EU) 2020/1498 concerning the non-renewal of approval of the active substance thiophanate-methyl, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJEU. 2020; https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020R1498 (accessed December 12, 2022)

Tan H, Li Q, Zhang H, Wu C, Zhao S, Deng X, Li Y. Pesticide residues in agricultural topsoil from the Hainan tropical riverside basin: Determination, distribution, and relationships with planting patterns and surface water. Sci Tot Environ. 2020; 722: 137856. https://doi.org/10.1016/j.scitotenv.2020.137856

Saleh IA, Zouari N, Al-Ghouti MA. Removal of pesticides from water and wastewater: Chemical, physical and biological treatment approaches. Environ Technol Innov. 2020; 19: . https://doi.org/10.1016/j.eti.2020.101026

Mukherjee A, Mehta R, Saha S, Bhattacharya A, Biswas PK, Kole RK. Removal of multiple pesticide residues from water by low-pressure thin-film composite membrane. Appl Water Sci. 2020; 10(12): 1-8. https://doi.org/10.1007/s13201-020-01315-y

Jovanović AA, Bugarčić MD, Marinković AD, Sokić MD. Insights into the application of polyaniline-based composites in environmental engineering. Metal Mater Data. 2023; 1(1): 25-31. https://doi.org/10.30544/MMD1

Zhang F, Wang X, Liu H, Liu C, Wan Y, Long Y, Cai Z. Recent advances and applications of semiconductor photocatalytic technology. Appl Sci. 2019; 9(12): 1-43. https://doi.org/10.3390/app9122489

Shokri A, Sanavi Fard M. A critical review in the features and application of photocatalysts in wastewater treatment. Chem Paper. 2022; 76(9): 5309-5339. https://doi.org/10.1007/s11696-022-02256-3

Zhang Y, Chu W. Cooperation of multi-walled carbon nanotubes and cobalt doped TiO2 to activate peroxymonosulfate for antipyrine photocatalytic degradation. Sep Purif Technol. 2022; 282: 119996. https://doi.org/10.1016/j.seppur.2021.119996

He X, Kai T, Ding P. Heterojunction photocatalysts for degradation of the tetracycline antibiotic: a review. Environ Chem Lett. 2021; 19(6): 4563-4601. https://doi.org/10.1007/s10311-021-01295-8

Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA. Heterojunction Photocatalysts. Adv Mat. 2017; 29(20): 1601694. https://doi.org/10.1002/adma.201601694

Xu J, Zhang T. Fabrication of spent FCC catalyst composites by loaded V2O5 and TiO2 and their comparative photocatalytic activities. Sci Rep. 2019; 9(1):11099. https://doi.org/10.1038/s41598-019-47155-y

Kesavan G, Pichumani M, Chen SM. Influence of Crystalline, Structural, and Electrochemical Properties of Iron Vanadate Nanostructures on Flutamide Detection. ACS Appl Nano Mater. 2021; 4(6): 5883-5894. https://doi.org/10.1021/acsanm.1c00802

Dutta DP, Ramakrishnan M, Roy M, Kumar A. Effect of transition metal doping on the photocatalytic properties of FeVO4 nanoparticles. J Photochem Photobiol A Chem. 2017; 335: 102-111. https://doi.org/10.1016/j.jphotochem.2016.11.022

Min YL, Zhang K, Chen YC, Zhang YG. Synthesis of novel visible light responding vanadate/TiO2 heterostructure photocatalysts for application of organic pollutants. Chem Eng J. 2011; 175(1): 76-83. https://doi.org/10.1016/j.cej.2011.09.042

Schwertman U, Cornell RM. Iron Oxides in the Laboratory. Second edition. Weinheim: Wiley VCH Verlag GmbH; 2000, 91-92.

Ines M, Paolo P, Roberto F, Mohamed S. Experimental studies on the effect of using phase change material in a salinity-gradient solar pond under a solar simulator. Sol Energy. 2019; 186: 335-346. https://doi.org/10.1016/j.solener.2019.05.011

EPA. Method 410.4, Revision 2.0: The Determination of Chemical Oxygen Demand by Semi-Automated Colorimetry. 1993

Ozer D, Tunca ET, Oztas NA. Effects of fuel type on iron vanadate nanocatalyst synthesized by solution combustion method for methylene blue degradation. J Nanopartcl Res. 2021; 23(8): 1- 12. https://doi.org/10.1007/s11051-021-05303-4

Zhao Y, Yao K, Cai Q, Shi Z, Sheng M, Lin H, Shao M. Hydrothermal route to metastable phase FeVO4 ultrathin nanosheets with exposed {010} facets: Synthesis, photocatalysis and gas-sensing. Cryst Eng Comm- 2014; 16(2): 270-276. https://doi.org/10.1039/c3ce41692e

Cui Y, Xue Y, Zhang R, Zhang J, Li X, Zhu X. Vanadium-cobalt oxyhydroxide shows ultralow overpotential for the oxygen evolution reaction. J Mater Chem A Mater. 2019; 7(38):21911-21917. https://doi.org/10.1039/c9ta07918a

Tamirat AG, Su WN, Dubale AA, Chen HM, Hwang BJ. Photoelectrochemical water splitting at low applied potential using a NiOOH coated codoped (Sn, Zr) α-Fe2O3 photoanode. J Mater Chem A Mater. 2015; 3(11): 5949-5961. https://doi.org/10.1039/c4ta06915c

Frison R, Cernuto G, Cervellino A, Zaharko O, Colonna GM, Guagliardi A, Masciocchi N. Magnetite-maghemite nanoparticles in the 5-15 nm range: Correlating the core-shell composition and the surface structure to the magnetic properties. A total scattering study. Chem Mat. 2013; 25(23): 4820-4827. https://doi.org/10.1021/cm403360f

Nithya VD, Selvan RK, Sanjeeviraja C, Radheep DM, Arumugam S. Synthesis and characterization of FeVO4 nanoparticles. Mater Res Bull. 2011; 46(10): 1654-1658. https://doi.org/10.1016/j.materresbull.2011.06.005

Zhu X, Chen J, Yu X, Zhu X, Gao X, Cen K. Controllable synthesis of novel hierarchical V2O5/TiO2 nanofibers with improved acetone oxidation performance. RSC Adv. 2015; 5(39): 30416-30424. https://doi.org/10.1039/c5ra01001b

Ghiyasiyan-Arani M, Salavati-Niasari M, Masjedi-Arani M, Mazloom F. An easy sonochemical route for synthesis, characterization and photocatalytic performance of nanosized FeVO4 in the presence of aminoacids as green capping agents. J Mater Sci: Mater Electron. 2018; 29(1): 474-485. https://doi.org/10.1007/s10854-017-7936-9

George S, Pokhrel S, Ji Z, Henderson BL, Xia T, Li L, Zink JI, Nel AE, Mädler L. Role of Fe doping in tuning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigm. J Am Chem Soc. 2011; 133(29): 11270-11278. https://doi.org/10.1021/ja202836s

Jovanović A, Stevanović M, Barudžija T, Cvijetić I, Lazarević S, Tomašević A, Marinković A. Advanced technology for photocatalytic degradation of thiophanate-methyl: Degradation pathways, DFT calculations and embryotoxic potential. Process Saf Environ Prot. 2023; 178: 423-443. https://doi.org/10.1016/j.psep.2023.08.054

Lewis KA, Tzilivakis J, Warner DJ, Green A. An international database for pesticide risk assessments and management. Hum Ecol Risk Assess. 2016; 22(4): 1050-1064. https://doi.org/10.1080/10807039.2015.1133242

Yoon H, Kim D, Park M, Kim J, Kim J, Srituravanich W, Shin B, Jung Y, Jeon S. Extraordinary Enhancement of UV Absorption in TiO2 Nanoparticles Enabled by Low-Oxidized Graphene Nanodots. J Phys Chem C. 2018; 122(22): 12114-12121. https://doi.org/10.1021/acs.jpcc.8b03329

Alamelu K, Jaffar Ali BM. TiO2-Pt composite photocatalyst for photodegradation and chemical reduction of recalcitrant organic pollutants. J Environ Chem Eng. 2018; 6(5): 5720-5731. https://doi.org/10.1016/j.jece.2018.08.042

Gonçalves JM, Ireno Da Silva M, Angnes L, Araki K. Vanadium-containing electro and photocatalysts for the oxygen evolution reaction: A review. J Mater Chem A Mater. 2020; 8(5): 2171-2206. https://doi.org/10.1039/c9ta10857b

Sindhu AS, Shinde NB, Harish S, Navaneethan M, Eswaran SK. Recoverable and reusable visible-light photocatalytic performance of CVD grown atomically thin MoS2 films. Chemosphere. 2022; 287: 132347. https://doi.org/10.1016/j.chemosphere.2021.132347

Guo T, Yang S, Chen Y, Yang L, Sun Y, Shang Q. Photocatalytic kinetics and cyclic stability of photocatalysts Fe-complex/TiO2 in the synergistic degradation of phenolic pollutants and reduction of Cr(VI). Environ Sci Pollut Res. 2021; 28(10): 12459-12473. https://doi.org/10.1007/s11356-020-11220-1

Sigma Aldrich 2023. https://www.sigmaaldrich.com/RS/en/search (accessed May 22, 2023)

Most read articles by the same author(s)