Reciprocating plate column – fundamental research and application in Serbia from 1970 to 2020 Review paper
Main Article Content
Abstract
In the group of multiphase contactors and reactors, an important place belongs to reciprocating plate columns (RPCs), which consist of a set of perforated plates fixed on a carrier (the so-called reciprocating or vibrating agitator) moving periodically up and down through a column. This construction maximizes the positive effects of mechanical agitation and minimizes or eliminates the adverse effects characteristic of column-type contactors and reactors. In RPCs, the highest dispersed-phase holdup is achieved at a lower dispersed-phase velocity due to the influence of mechanical agitation on the bubble or drop comminution. Therefore, this device can be the most acceptable contactor reactor for performing complex actions in multiphase systems. The paper reviews the fundamental research and application of RPCs in Serbia in the last fifty years, from 1970 to 2020. Hydrodynamic and mass-transfer characteristics are analyzed, such as the pressure variation at the column bottom, power consumption, dispersed-phase holdup, axial dispersion, liquid mass transfer coefficient, specific interfacial area, and volumetric mass transfer coefficient. The use of RPCs as reactors in bioprocesses and biodiesel production processes is also discussed.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
How to Cite
Funding data
-
Ministry of Scientific and Technological Development, Higher Education and Information Society,Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers . 451-03-47/2023-01/200133 - III 45001 -
Serbian Academy of Sciences and Arts
Grant numbers 0-14-18;F-78
References
Al Taweel AM, Landau J, Boyle J, Gomaa HG. Operational characteristics of a novel reciprocating plate multiphase contactor. Trans Inst Chem Eng. 1995; 73: 707–712.
Gomaa HG, Landau J, Al Taweel AM. Gas-liquid contacting in reciprocating plate columns: I. Hydrodynamics. Can J Chem Eng. 1991; 69: 228–239. https://doi.org/10.1002/cjce.5450690127
Skala D. Analiza sistema gas-tečnost u koloni sa vibracionom mešalicom. Doktorska disertacija, Univerzitet u Beogradu, Tehnološko-metalurški fakultet, Beograd; 1980 (in Serbian).
Lo TC, Prochazka J. Reciprocating plate extraction columns. In: Lo TC, Baird MHI, Hanson C. eds. Handbook of solvent extraction. New York, NY: John Wiley & Sons; 1983: 373–389. ISBN 0-471-04164-5.
Van Dijck WJD. Process and apparatus for intimately contacting fluids. US Patent 2,011,186; 1935. https://patentimages.storage.googleapis.com/6d/ac/4c/65e173f0fd9eba/US2011186.pdf
Karr AE. Performance of reciprocating plate extraction columns. AIChE J. 1959; 5: 446–452. https://doi.org/10.1002/aic.690050410
Pavasović V. Ispitivanje hidrodinamike u vibracionom ekstraktoru. Doktorska disertacija, Univerzitet u Beogradu, Tehnološko-metalurški fakultet, Beograd; 1975 (in Serbian).
Kažić N. Proučavanje promene pritiska u cilju definisanja hidromehaničkih sila u vibracionom ekstraktoru. Magistarska teza, Univerzitet u Beogradu, Mašinski fakultet, Beograd; 1979 (in Serbian).
Veljković V. Ispitivanje hidrodinamičkih i maseno-prenosnih karakteristika različitih reaktora i izbor optimalnog tipa za biosintezu dekstran-saharaze. Doktorska disertacija, Univerzitet u Beogradu, Tehnološko-metalurški fakultet, Beograd; 1985 (in Serbian).
Banković-Ilić I. Ispitivanje snage mešanja i sadržaja gasa u trofaznoj koloni sa vibracionom mešalicom. Magistarska teza, Univerzitet u Beogradu, Tehnološko-metalurški fakultet; Beograd; 1993 (in Serbian).
Banković-Ilić I. Hidrodinamika i prenos mase u sistemima gas-tečnost-čvrsto u koloni sa vibracionom mešalicom. Doktorska disertacija, Univerzitet u Nišu, Tehnološki fakultet, Leskovac; 1999 (in Serbian).
Naseva O. Uticaj reoloških osobina tečne faze na snagu mešanja u bioreaktoru sa vibracionom mešalicom, Magistarska teza, Univerzitet u Nišu, Tehnološki fakultet, Leskovac; 2002 (in Serbian).
Nikolić Lj. Povratno mešanje tečne faze i kinetika procesa alkoholne fermentacije u trofaznom bioreaktoru sa vibracionom mešalicom. Doktorska disertacija, Univerzitet u Nišu, Tehnološki fakultet, Leskovac; 2003. http://doiserbia.nb.rs/phd/fulltext/NI20031003NIKOLIC.pdf (in Serbian)
Stamenković I. Uticaj reoloških osobina tečne faze na sadržaj gasa i promenu pritiska na dnu reaktora sa vibracionom mešalicom. Magistarska teza, Univerzitet u Nišu, Tehnološki fakultet, Leskovac; 2005 (in Serbian).
Vasić Lj. Brzina prenosa mase kiseonika kao kriterijum za povećanje razmere kolone sa vibracionom mešalicom. Magistarska teza, Univerzitet u Nišu, Tehnološki fakultet, Leskovac; 2006 (in Serbian).
Aleksić M. Hidrodinamičke i maseno-prenosne karakteristike višefaznog reaktora sa vibracionom mešalicom. Doktorska disertacija, Univerzitet u Nišu, Tehnološki fakultet, Leskovac; 2006 (in Serbian).
Stamenković IS, Banković-Ilić IB, Jovanić PB, Veljković VB, Skala D. Hydrodynamics of a cocurrent upflowliquid-liquid reciprocating plate reactor for homogeneously base-catalyzed methanolysis of vegetable oils. Fuel. 2010; 89: 3971–3984. http://www.doi:10.1016/j.fuel.2010.06.026
Stamenković I. Kontinualna homogena bazno katalizovana alkoholiza biljnih ulja u reaktoru sa vibracionom mešalicom. Doktorska disertacija, Univerzitet u Nišu, Tehnološki fakultet, Leskovac; 2014 (in Serbian).
Banković-Ilić IB, Todorović ZB, Avramović JM, Veličković AV, Veljković VB. The effect of tetrahydrofuran on the base-catalyzed sunflower oil methanolysis in a continuous reciprocating plate reactor. Fuel Process Technol. 2015; 137: 339–350. http://dx.doi.org/10.1016/j.fuproc.2015.03.023
Miladinović MR, Stojković IS, Veličković AV, Stamenković OS, Banković-Ilić IB, Veljković VB. Optimization and kinetic modeling of waste lard methanolysis in a continuous reciprocating plate reactor. Chin J Chem Eng. 2019; 27: 2481–2490. https://doi.org/10.1016/j.cjche.2019.02.019
Brauer H. Growth of fungi and bacteria in the reciprocating jet bioreactor. Bioprocess Eng. 1990; 6: 1–15. https://doi.org/10.1007/BF00369272
Veljković V, Skala D. Hydrodynamic investigation of gas-liquid contacting in a reciprocating plate column. Can J Chem Eng. 1986; 64: 906-914. https://doi.org/10.1002/cjce.5450640604
Jealous AC, Johnson HF. Power requirements for pulse generation in pulse column. Ind Eng Chem. 1955; 47: 1159–1166 https://doi.org/10.1021/ie50546a021
Baird MHI, Rama Rao NV, Stonestreet P. Power dissipation and holdup in a gassed reciprocating baffle-plate column. Trans Inst Chem Eng. 1996; 74: 463–470. https://doi.org/10.1002/cjce.5450730401
Baird MHI, Stonestreet P. Energy dissipation in oscillatory flow within a baffled tube. Trans Inst Chem Eng. 1995; 73A: 503–511.
Hafez M, Baird MHI. Power consumption in a reciprocating plate column. Trans Inst Chem Eng. 1978; 56: 229–238.
Banković-Ilić I, Veljković V, Skala D. Hidrodinamičke i masenoprenosne karakteristike kolone sa vibracionom mešalicom za sisteme gas-tečnost i gas-tečnost-čvrsta faza – monografija. Univerzitet u Nišu, Tehnološki fakultet, Leskovac; 2009. ISBN 978-86-82367-80-2 (in Serbian).
Banković-Ilić IB, Veljković VB, Lazić ML, Skala DU. Power consumption and gas holdup in a gas-liquid reciprocating plate column. Chem Eng Comm. 1995; 134: 17–32. https://doi.org/10.1080/00986449508936320
Aleksić M, Veljković VB, Banković-Ilić IB, Lazić ML, Skala DU. Uticaj Rašigovih prstenova i reoloških osobina tečnosti na promenu pritiska na dnu kolone sa vibracionom mešalicom. Hem Ind. 2002; 56: 409–414. https://doi.org/10.2298/HEMIND0210409A (in Serbian)
Vasić Lj, Banković-Ilić IB, Lazić ML, Veljković VB, Skala DU. The effects of operating conditions on the pressure variation at the bottom of a 16.6 cm i.d. reciprocating plate column. Chem Ind Chem Eng Q. 2005; 11: 195–202. https://doi.org/10.2298/CICEQ0504195V
Aleksić M, Veljković VB, Banković-Ilić IB, Lazić ML, Skala DU. Uticaj Rašigovihi reoloških osobina tečnosti na promenu pritiska na dnu kolone sa vibracionom mešalicom. Hem Ind. 2003; 57: 107–113. https://doi.org/10.2298/HEMIND0210409A (in Serbian)
Banković-Ilić IB, Veljković VB, Lazić ML, Skala DU. Hydrodynamics of a gas-liquid-solid reciprocating plate column. In: 11th International Congress of Chemical and Process Engineering, Prague, Czech Republic, 1993, E4.27.
Banković-Ilić IB, Veljković VB, Lazić MB, Skala DU. Power consumption and pressure fluctuation at the column base in gas-liquid-solid reciprocating plate columns. In: 12th International Congress of Chemical and Process Engineering. Prague, Czech Republic, 1996, P3.89.
Banković-Ilić IB, Veljković VB, Lazić ML, Skala DU. Influence of liquid properties on power consumption in reciprocating plate columns. I. Newtonian fluids. In: 13th International Congress of Chemical and Process Engineering. Prague, Czech Republic, 1998, P3.37 (CD-ROM of full texts 0195.pdf).
Banković-Ilić I. Stamenković I, Stamenković O, Lazić M, Veljković V, Skala D. Pressure variation at the bottom of a reciprocating plate reactor filled with non-newtonian liquids. In: 18th Congress of Chemists and Technologists of Macedonia. Ohrid, Republic of Macedonia, 2004, CD ROM of Extendent abstracts, CHE-Bankovic-IlicIvana-effects-e.pdf.
Naseva OS, Stamenković IS, Banković-Ilić IB, Lazić ML, Veljković VB, Skala DU. Sadržaj gasa u bioreaktoru sa vibracionom mešalicom – tečna faza je njutnovski fluid. Hem Ind. 2002; 56: 198–203. https://doi.org/10.2298/HEMIND0205198N (in Serbian)
Stamenković I, Stamenković O, Banković-Ilić I, Lazić M, Veljković V, Skala DU. The pressure variation at the bottom of a reciprocating plate bioreactor filled with non-newtonian liquids. In: 16th International Congress of Chemical and Process Engineering. Prague, Czech Republic, 2004, CD ROM of Full Texts 0763.pdf.
Vasić LS, Banković-Ilić IB, Lazić ML, Veljković VB, Skala DU. Snaga mešanja nenjutnovskih tečnosti u višefaznoj koloni sa vibracionim mešanjem prečnika 16,6 cm. In: 19. Kongres o procesnoj industriji Procesing 2006, Zbornik rezimea radova. Beograd, Srbija, 2006, CD verzija punog rada (in Serbian).
Rama Rao NV, Baird MHI. Characteristics of a countercurrent reciprocating plate bubble column. I. Holdup, pressure drop and bubble diameter. Can J Chem Eng. 1988, 66: 211–221. https://doi.org/10.1002/cjce.5450660205
Yang NS, Shen ZQ, Chen BH, McMillan AF. Pressure drop, gas holdup and interfacial area for gas-liquid contact in Karr-columns. Ind Eng Chem Proc Des Dev. 1986; 25: 660–664. https://doi.org/10.1021/i200034a011
Rama Rao NV, Srinivas NS, Varma YBG. Dispersed phase holdup and drop size distributions in reciprocating plate columns. Can J Chem Eng. 1983; 61: 168–177. https://doi.org/10.1002/cjce.5450610204
Aleksić M, Veljković VB, Banković-Ilić IB, Lazić ML, Skala DU. Gas holdup in a gassed reciprocating plate column with Rashig rings placed in interplate spaces. Can J Chem Eng. 2002: 80: 485–490. https://doi.org/10.1002/cjce.5450800318
Skala D, Veljković V. Zadržavanje gasa u trofaznoj koloni sa vibracionom mešalicom. In: II Jugoslovenski kongres za hemijsko inženjerstvo i procesnu tehniku sa međunarodnim učešćem, Zbornik radova II. Dubrovnik, Jugoslavija, 1987, pp. 56–59 (in Serbo-Croation).
SkalaDU, Veljković VB. Gas holdup in three-phase reciprocating columns. In: Cheremisinoff NP, ed. Mixed-flow hydrodynamics: advances in engineering fluid mechanics. Houston: Gulf Publ. Co; 1996: 803-810. ISBN 0-88415-256-1.
Skala DU, Veljković VB, Janjić VV, Lazić M, Banković-Ilić IB. Gas holdup in a gas-liquid-solid reciprocating plate column. Can J Chem Eng. 1993; 71: 817–820. https://doi.org/10.1002/cjce.5450710521
Veljković VB, Banković-Ilić IB, Lazić ML, Skala DU. Gas holdup in three-phase reciprocating plate columns. In: 12th International Congress of Chemical and Process Engineering. Prague, Czech Republic, 1996, P3.90.
Aleksić M, Veljković V, Banković-Ilić I, Lazić M, Skala D. The Effects of operating conditions on the gas holdup in a multiphase reciprocating plate column with Rashig rings placed in interplate spaces. In: 16th International Congress of Chemical and Process Engineering. Prague, Czech Republic, 2004, CD ROM of Full Texts 0755.pdf.
Banković-Ilić I, Veljković V, Skala D. Gas holdup in a three phase reactors of the bubble column type. Hem Ind. 1994; 48: 397–402.
Banković-Ilić I, Aleksić M, Veljković V, Lazić M, Skala D. Effects of size of Rashig rings placed in interplate spaces and fractional plate free area on the gas holdup in a reciprocating plate reactor. In: 18th Congress of Chemists and Technologists of Macedonia. Ohrid. Republic of Macedonia, 2004, CD Rom of Extendent abstracts, CHE-11-Bankovic-IlicIvana-effects-e.pdf.
Lounes M, Thiboult J. Hydrodynamics and oower consumption of a reciprocating rlate gas-liquid column. Can J Chem Eng. 1993; 71: 497-506.
Stamenković IS, Stamenković OS, Banković-Ilić IB, Lazić ML, Veljković VB, Skala DU. The gas holdup in a multiphase reciprocating plate column filled with carboxymethylcellulose solutions. J Serb Chem Soc. 2005; 70: 1533–1544. https://doi.org/10.2298/JSC0512533S
Vasić LJ, Banković-Ilić IB, Lazić ML, Veljković VB, Skala DU. Sadržaj gasa u koloni sa vibracionom mešalicom prečnika 16,6 cm. Hem Ind. 2005; 59: 263–266. https://doi.org/10.2298/HEMIND0510263V
Vasić LS, Banković-Ilić IB, Lazić ML, Veljković VB, Skala DU. The gas holdup in a 16.6 cm i.d. multiphase reciprocating plate column. In: 5th International Conference of the Chemical Societies of the Southeast European Countries. Ohrid, Republic of Macedonia, 2006, p. 238.
Chen BH, Yang NS, McMillan AF. Gas holdup and pressure drop for air-water flow through plate bubble columns. Can J Chem Eng. 1986; 64: 387–392. https://doi.org/10.1002/cjce.5450640305
Sundaresan A, Varma YBG. Dispersed phase holdup and bubble size distributions in gas-liquid cocurrent upflow and countercurrent flow in reciprocating plate column. Can J Chem Eng. 1990; 68: 560–568. https://doi.org/10.1002/cjce.5450680405
Skala D, Veljković V. Gas holdup in a Karr reciprocating plate column. In: 9th International Congress of Chemical and Process Engineering. Prague, Czech Republic, 1987.
Nikolić LB, Nikolić VD, Veljković VB, Skala DU. Gas holdup in a three-phase reciprocating plate column. J Serb Chem Soc. 2005; 70: 1363–1371. https://doi.org/10.2298/JSC0511363N
Veljković V, Skala D. Mass transfer characteristics in a gas-liquid reciprocating plate column. II. Interfacial area. Can J Chem Eng. 1988; 66: 200–210. https://doi.org/10.1002/cjce.5450660203
Kagan SZ, Veisbein BA, Trukhanov VG, Musychenko LA. Longitudinal mixing and its effect on mass transfer in pulsed-screen extractor. Int Chem Eng. 1973; 13: 217–219.
Miyauchi T, Oya H. Longitudinal dispersion in pulsed perforated-plate columns. AlChE J. 1965; 11: 395–402. https://doi.org/10.1002/aic.690110307
Kim SD, Baird MHI. Axial dispersion in a reciprocating plate extraction column. Can J Chem Eng. 1976; 54: 81–89. https://doi.org/10.1002/cjce.5450540112
Stevens GW, Baird MHI. A model for axial mixing in reciprocating plate columns. Chem Eng Sci. 1990; 45: 457–465. https://doi.org/10.1016/0009-2509(90)87032-N
Mar BW, Babb AL. Longitudinal mixing in a pulsed sieve-plate extraction column. Ind Eng Chem. 1959; 51: 1011–1014. https://doi.org/10.1021/ie51396a032
Kim SD, Baird MHI. Effect of hole size on hydrodynamics of a reciprocating perforated plate extraction column. Can J Chem Eng. 976; 54: 235–237. https://doi.org/10.1002/cjce.5450540320
Karr AE, Gebert W, Wang M. Axial mixing and scale-up of reciprocating plate columns. Can J Chem Eng. 1987; 65: 373–381. https://doi.org/10.1002/cjce.5450650304
Nikolić LB, Nikolić VD, Veljković VB, Lazić ML, Skala DU. Axial dispersion of the liquid phase in a three-phase Karr reciprocating plate column. J Serb Chem Soc. 2004; 69: 581–599. https://doi.org/10.2298/JSC0407581N
Baird MHI, Rama Rao NV. Axial mixing in a reciprocating plate with very small density gradients. AlChE J. 1988; 37: 1019–1026. https://doi.org/10.1002/aic.690370707
Baird MHI, Rice RG. Axial dispersion in large unbaffled column. Chem Eng J. 1975; 9: 171–174. https://doi.org/10.1016/0300-9467(75)80010-4
Sater VE, Levenspiel O. Two-phase flow in packed beds. Ind Eng Chem Fundam.1966; 5: 86–92. https://doi.org/10.1021/i160017a015
Skala D. Ispitivanje aksijalnog mešanja u Karrovoj koloni, Magistarski rad, Univerzitet u Beogradu, Tehnološko-metalurški fakultet, Beograd, 1976 (in Serbian).
Banković-Ilić IB, Veljković VB, Lazić ML, Skala DU. Mass transfer in a multiphase vibration column. I. The volumetric mass transfer coefficient. Hem Ind. 2001; 55: 376–382.
Banković-Ilić IB, Veljković VB, Lazić ML, Skala DU. Mass transfer in a multiphase vibration column. II. Interfacial area. Hem Ind. 2001; 55: 383–388.
Yang NS, Shen ZQ, Chen BH, McMillan AF. Axial mixing and mass transfer in gas-liquid Karr columns. Ind Eng Chem Process Des Dev. 1986; 25: 776–780.
Miyanami K, Tojo K, Minami I, Yano T. Gas-liquid mass transfer in vibrating disc column. Chem Eng Sci. 1978; 33: 601–608. https://doi.org/10.1016/0009-2509(78)80022-0
Yoshida Y, Muira Y. Gas absorption in agitated gas-liquid contactors. Ind Eng Chem Process Des Dev. 1963; 2: 263–268. https://doi.org/10.1021/i260008a002
Baird MHI, Garstang JH. Gas absorption in a pulsed bubble column. Can J Chem Eng. 1972; 27: 823–833. https://doi.org/10.1016/0009-2509(72)85016-4
Miller DN. Scale-up of agitated vessels gas-liquid mass transfer. AIChE J. 1974; 20: 445–53. https://doi.org/10.1002/aic.690200303
Akita K, Yoshida F. Bubble size interfacial area and liquid-phase mass transfer coefficient in bubble columns. Ind Eng Chem Process Des Dev. 1974; 13: 84–91. https://doi.org/10.1021/i260049a016
Sundaresan A, Varma YBG. Interfacial area and mass transfer in gas-liquid cocurrent upflow and countercurrent flow in reciprocating plate column. Can J Chem Eng. 1990; 68: 951–958. https://doi.org/10.1002/cjce.5450680610
Lounes M, Thibault J. Mass transfer in a reciprocating plate bioreactor. Chem Eng Comm. 1994; 127: 169–189. https://doi.org/10.1080/00986449408936231
Skala D, Veljković V. Mass transfer characteristics in a gas-liquid reciprocating plate column. I. Liquid phase volumetric mass transfer coefficient. Can J Chem Eng. 1988; 66: 192–199. https://doi.org/10.1002/cjce.5450660203
Rama Rao NV, Baird MHI. Gas-liquid mass transfer in a 15 cm diameter reciprocating plate column. J Chem Technol Biotech. 2003; 78: 134–137. https://doi.org/10.1002/jctb.704
Liu CH, Chen BH. Characteristics of reciprocating screen-plate bubble column with dilute alcohol solutions. Can J Chem Eng. 1993; 71: 464–467. https://doi.org/10.1002/cjce.5450710318
Vasić LS, Banković-Ilić IB, Lazić ML, Veljković VB, Skala DU. Oxygen mass transfer in a 16.6 i.d. multiphase reciprocating plate column. J Serb Chem Soc. 2007; 72: 523–531. https://doi.org/10.2298/JSC0705523V
Brauer H, Sucker D. Biological waste water treatment in a high efficiency reactor. Ger Chem Eng. 1979; 2: 77-86.
Audet J, Lounes M, Thibault J. Pullulan fermentation in a reciprocating plate bioreactor. Bioprocess Eng. 1996; 15: 209–214. https://doi.org/10.1007/BF00369484
Lounes M, Audet J, Thibault J, LeDuy A. Description and evaluation of a reciprocating plate bioreactors. Bioprocess Eng. 1995; 13: 1–11. https://doi.org/10.1007/BF00368758
Veljković VB, Lazić ML, Rutić DJ, Jovanović SM, Skala DU. Selection of a bioreactor and the optimal aerobic conditions for dextransucrase fermentation by Leuconostoc mesenteroides. .J Serb Chem Soc. 1990; 35: 483–490.
Reschke M, Schügerl K. Continuous reactive extraction of penicillin-G in a Karr column. Chem Eng J. 1985; 31: B19-B26. https://doi.org/10.1016/0300-9467(85)80061-7
Deshusses MA, Chen W, Mulchandani M. Innovative bioreactors. Curr Opin Biotechnol. 1997; 8: 165–168. https://doi.org/10.1016/S0958-1669(97)80096-1
Stamenković I, Stamenković O, Banković-Ilić I, Todorović Z, Lazić M, Veljković V, Skala D. Dobijanje estara masnih kiselina postupkom alkoholize biljnih ulja. RS 52398 B, 2013 (in Serbian).
Stamenković I, Banković-Ilić I, Konstantinović S, Ilić S, Lazić M, Veljković V, Skala D. Laboratorijski kontinualni tehnološki postupak za dobijanje metil estara masnih kiselina repičinog ulja, Univerzitet u Nišu, Теhnološki fakultet, br. 04 536/1, Leskovac, 2010.
Stamenković I, Banković Ilić I, Todorović Z, Lazić M, Veljković V, Skala D. Kontinualna poluindustrijska proizvodnja metil estara masnih kiselina iz ulja repice. In: IX Savjetovanje hemičara i tehnologa Republike Srpske. Banja Luka, Republika Srpska, BiH, 2010, p. 69.