Estimation of permeability properties of technologically developed jacquard fabrics Original scientific paper

Main Article Content

Klara Kostajnšek
https://orcid.org/0000-0002-3610-3867
Matejka Bizjak

Abstract

The study investigated how certain design parameters affect the permeability properties of jacquard fabrics. Six woven samples were made on the same cotton warp and with the same loom setting. The fabrics were made from two different types of weft yarns (cotton and Lyocell Clima), in two different pattern sizes (with larger and smaller monochrome areas), and two groups of double twill weaves (self-stitched double cloth, interchanging double cloth). We proved the importance of the size and distribution of the pattern/motif, the type of weave and the type of yarns used in the jacquard fabrics and the influence they have on the permeability properties in close relation to the aesthetic function. All patterns with interchanging double weave have significantly higher air permeability than patterns with self-stitched weave. For thermal conductivity, the influence of the raw material and the size of the pattern/motif is obvious. For fabrics with patterns with larger geometric areas, where the presence of weft threads on the surface is greater, the thermal conductivity is higher. The pattern size, on the other hand, does not affect the ultraviolet protection factor (UPF), unlike the raw material from which it is made.

Article Details

How to Cite
[1]
K. Kostajnšek and M. Bizjak, “Estimation of permeability properties of technologically developed jacquard fabrics : Original scientific paper”, Hem Ind, vol. 77, no. 3, pp. 191–202, Mar. 2023, doi: 10.2298/HEMIND221017008K.
Section
Transport properties and permeability of textile materials

How to Cite

[1]
K. Kostajnšek and M. Bizjak, “Estimation of permeability properties of technologically developed jacquard fabrics : Original scientific paper”, Hem Ind, vol. 77, no. 3, pp. 191–202, Mar. 2023, doi: 10.2298/HEMIND221017008K.

References

Decrette M, Mourad S, Osselin JF, Drean JY. Jacquard UNIVAL 100 parameters study for high-density weaving optimization. J Ind Text. 2016; 45(6): 1603-1618. https://doi.org/10.1177/1528083714567241

Yavuzkasap AYakta D, Çaglar Cinperi N, Özdemir H. Investigating the effect of self-cleaning treatment on the air permeability, stain removal and water repellency properties of functionalized double jacquard woven upholstery fabrics. Ind Textila. 2019; 70 (6): 512-518. http://doi.org/10.35530/IT.070.06.1483 .

Akgün M, Ulu İ, Erkek E. The effect of properties and positioning of yarns used in jacquard woven fabric pattern on abrasion resistance. Tekst. 2021; 28 (123): 180-190. https://doi.org/10.7216/1300759920212812303 .

Süle G. The Effects of Jacquard Woven Fabric Constructional Parameters and Elastane Yarn on Bending Rigidity. J Eng Fibers Fabr. 2015; 10 (2): 164-170. https://doi.org/10.1177/155892501501000219 .

Kostajnšek K, Dimitrovski K, Kadoğlu H, Çelik P, Başal Bayraktar G, Bedez Üte T, Duran D, Ertekin M, Demšar A, Bizjak M. Functionalization of Woven Fabrics with PBT Yarns. Polymers. 2021; 13 (2), 260: 1-19. https://doi.org/10.3390/polym13020260

Rijavec T, Bukošek V. Novel fibres for the 21st Century. Tekstilec. 2009; 47: 13-25. http://www.tekstilec.si/wp-content/uploads/2009/11/Novel-Fibres-for-the-21st-Century.pdf

Iqbal K, Sun D. Development of thermal stable multifilament yarn containing micro-encapsulated phase change materials. Fibers Polym. 2015; 16 (5): 1156-1162. https://doi.org/10.1007/s12221-015-1156-9 .

Ng WS, Hu H. Woven Fabrics Made of Auxetic Plied Yarns. Polymers. 2018; 10 (2): 226. https://doi.org/10.3390/polym10020226 .

Kostajnšek K, Urbas R, Dimitrovski K. A New Simplified Model for Predicting the UV-Protective Properties of Monofilament PET Fabrics. Autex Res J. 2019; 19 (3): 263-270. https://doi.org/10.1515/aut-2018-0041 .

Kocić AA, Bizjak M, Popović D, Poparić, GB, Stanković, SB. UV protection afforded by textile fabrics made of natural and regenerated cellulose fibres. J Clean Prod. 2019; 228: 1229-1237. https://doi.org/10.1016/j.jclepro.2019.04.355 .

Ghane M, Ghorbani E. Investigation into the UV-Protection of Woven Fabrics Composed of Metallic Weft Yarns. Autex Res J. 2016; 16 (3): 154-159. https://doi.org/10.1515/aut-2015-0021 .

Ng MCF, Zhou J. A Study on Figured Double-face Jacquard Fabric with Full-color Effect. Text Res J. 2009; 79 (10): 930-936. https://doi.org/10.1177/0040517508095603 .

Bilisik K, Demir F. Dimensional and mechanical characterization of newly developed denim fabrics based on experimentally determined property-structural pattern relations for upholstery applications. Fibers Polym. 2010; 11: 521-530. https://doi.org/10.1007/s12221-010-0521-y .

Bizjak Bojič M, Dimitrovski K. The Role of Technological Parameters at Woven Fabrics Construction. Int J Polym Mater. 2000; 47(4): 603-612. https://doi.org/10.1080/00914030008031315 .

Kostajnšek K, Dimitrovski K. Multilayer cotton fabric porosity and its influence on permeability properties. Tekstilec. 2018; 61 (4): 254-264.https://doi.org/10.14502/Tekstilec2018.61.254-264 .

Zampetakis A, Katsaros G. Optimization of wear comfort parameters for summer cloths Ind. Textila. 2008; 59(5): 213-220. https://www.researchgate.net/publication/294419954_Optimizing_the_wear_comfort_parameters_for_summer_clothes .

Dimitrovski K. Določanje odprte površine za pretok v tekstilijah. Tekstilec. 1997; 40 (1-2): 5-10. (in Slovenian)

Dimitrovski K. Metode za določanje poroznosti v tekstilijah. Tekstilec.1995; 38 (5):121-123. (in Slovenian)

Kostajnšek K., Zupin Ž, Hladnik A, Dimitrovski K. Optical assessment of porosity parameters in transparent woven fabrics. Polymers. 2021; 13(3): 408. https://doi.org/10.3390/polym13030408 .

Jakšić D, Jakšić N. Assessment of Porosity of flat textile fabric. Text Res J. 2007; 77 (2): 105-110. https://doi.org/10.1177/0040517506065892 .

Dobnik Dubrovski P. Volume porosity of woven. Text Res J. 2000; 70: 915-919. https://doi.org/10.1177/004051750007001011

Arahne CAD/CAM for weaving. https://www.arahne.si/sl/. Accessed April 7, 2022.

SIST EN 1049-2: Textiles - Woven fabrics - Construction - Methods of analysis - Part 2: Determination of number of threads per unit length (ISO 7211-2:1984 modified). 1999

SIST EN 12127: Textiles - Fabrics - Determination of mass per unit area using small samples. 1999

SIST EN ISO 5084: Textiles - Determination of thickness of textiles and textile products. 1999

SIST EN ISO 9237: Textiles - Determination of permeability of fabrics to air. 1999

DIN 52 612: Testing of Thermal Insulating Materials; Determination of Thermal Conductivity by the Guarded Hot Plate Apparatus; Test Procedure and Evaluation. 1979

EN 13758-1:2001: Textiles - Solar UV protective properties - Part 1: Method of test for apparel fabrics. 2006

Tàpias M, Ralló M, Escofet J, Algaba I, Riva A. Objective measure of woven fabric’s cover factor by Image processing. Text Res J. 2010; 80: 35-44. https://doi.org/10.1177/0040517509104471 .

Ragab A, Fouda A, El-Deeb H, Abou-Taleb H. Determination of Pore Size. Porosity and Pore Size Distribution of Woven Structures by Image Analysis Techniques. J Textile Sci Eng. 2017; 7: 1-9. https://doi.org/10.4172/2165-8064.1000314 .

Kostajnšek K, Dimitrovski K, Hladnik A. Use of image analysis for the determination of open area fraction in woven fabrics. In: Proceedings of 13th Autex Conference. Dresden, Germany, 2013, pp. 1-5.

Kostajnšek K, Zupin Ž, Hladnik A, Dimitrovski K. Optical Assessment of Porosity Parameters in Transparent Woven Fabrics. Polymers. 2021; 13(3): 408. https://doi.org/10.3390/polym13030408.

Similar Articles

You may also start an advanced similarity search for this article.