Estimation of permeability properties of technologically developed jacquard fabrics Original scientific paper
Main Article Content
Abstract
The study investigated how certain design parameters affect the permeability properties of jacquard fabrics. Six woven samples were made on the same cotton warp and with the same loom setting. The fabrics were made from two different types of weft yarns (cotton and Lyocell Clima), in two different pattern sizes (with larger and smaller monochrome areas), and two groups of double twill weaves (self-stitched double cloth, interchanging double cloth). We proved the importance of the size and distribution of the pattern/motif, the type of weave and the type of yarns used in the jacquard fabrics and the influence they have on the permeability properties in close relation to the aesthetic function. All patterns with interchanging double weave have significantly higher air permeability than patterns with self-stitched weave. For thermal conductivity, the influence of the raw material and the size of the pattern/motif is obvious. For fabrics with patterns with larger geometric areas, where the presence of weft threads on the surface is greater, the thermal conductivity is higher. The pattern size, on the other hand, does not affect the ultraviolet protection factor (UPF), unlike the raw material from which it is made.
Article Details
Issue
Section
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.
How to Cite
References
Decrette M, Mourad S, Osselin JF, Drean JY. Jacquard UNIVAL 100 parameters study for high-density weaving optimization. J Ind Text. 2016; 45(6): 1603-1618. https://doi.org/10.1177/1528083714567241
Yavuzkasap AYakta D, Çaglar Cinperi N, Özdemir H. Investigating the effect of self-cleaning treatment on the air permeability, stain removal and water repellency properties of functionalized double jacquard woven upholstery fabrics. Ind Textila. 2019; 70 (6): 512-518. http://doi.org/10.35530/IT.070.06.1483 .
Akgün M, Ulu İ, Erkek E. The effect of properties and positioning of yarns used in jacquard woven fabric pattern on abrasion resistance. Tekst. 2021; 28 (123): 180-190. https://doi.org/10.7216/1300759920212812303 .
Süle G. The Effects of Jacquard Woven Fabric Constructional Parameters and Elastane Yarn on Bending Rigidity. J Eng Fibers Fabr. 2015; 10 (2): 164-170. https://doi.org/10.1177/155892501501000219 .
Kostajnšek K, Dimitrovski K, Kadoğlu H, Çelik P, Başal Bayraktar G, Bedez Üte T, Duran D, Ertekin M, Demšar A, Bizjak M. Functionalization of Woven Fabrics with PBT Yarns. Polymers. 2021; 13 (2), 260: 1-19. https://doi.org/10.3390/polym13020260
Rijavec T, Bukošek V. Novel fibres for the 21st Century. Tekstilec. 2009; 47: 13-25. http://www.tekstilec.si/wp-content/uploads/2009/11/Novel-Fibres-for-the-21st-Century.pdf
Iqbal K, Sun D. Development of thermal stable multifilament yarn containing micro-encapsulated phase change materials. Fibers Polym. 2015; 16 (5): 1156-1162. https://doi.org/10.1007/s12221-015-1156-9 .
Ng WS, Hu H. Woven Fabrics Made of Auxetic Plied Yarns. Polymers. 2018; 10 (2): 226. https://doi.org/10.3390/polym10020226 .
Kostajnšek K, Urbas R, Dimitrovski K. A New Simplified Model for Predicting the UV-Protective Properties of Monofilament PET Fabrics. Autex Res J. 2019; 19 (3): 263-270. https://doi.org/10.1515/aut-2018-0041 .
Kocić AA, Bizjak M, Popović D, Poparić, GB, Stanković, SB. UV protection afforded by textile fabrics made of natural and regenerated cellulose fibres. J Clean Prod. 2019; 228: 1229-1237. https://doi.org/10.1016/j.jclepro.2019.04.355 .
Ghane M, Ghorbani E. Investigation into the UV-Protection of Woven Fabrics Composed of Metallic Weft Yarns. Autex Res J. 2016; 16 (3): 154-159. https://doi.org/10.1515/aut-2015-0021 .
Ng MCF, Zhou J. A Study on Figured Double-face Jacquard Fabric with Full-color Effect. Text Res J. 2009; 79 (10): 930-936. https://doi.org/10.1177/0040517508095603 .
Bilisik K, Demir F. Dimensional and mechanical characterization of newly developed denim fabrics based on experimentally determined property-structural pattern relations for upholstery applications. Fibers Polym. 2010; 11: 521-530. https://doi.org/10.1007/s12221-010-0521-y .
Bizjak Bojič M, Dimitrovski K. The Role of Technological Parameters at Woven Fabrics Construction. Int J Polym Mater. 2000; 47(4): 603-612. https://doi.org/10.1080/00914030008031315 .
Kostajnšek K, Dimitrovski K. Multilayer cotton fabric porosity and its influence on permeability properties. Tekstilec. 2018; 61 (4): 254-264.https://doi.org/10.14502/Tekstilec2018.61.254-264 .
Zampetakis A, Katsaros G. Optimization of wear comfort parameters for summer cloths Ind. Textila. 2008; 59(5): 213-220. https://www.researchgate.net/publication/294419954_Optimizing_the_wear_comfort_parameters_for_summer_clothes .
Dimitrovski K. Določanje odprte površine za pretok v tekstilijah. Tekstilec. 1997; 40 (1-2): 5-10. (in Slovenian)
Dimitrovski K. Metode za določanje poroznosti v tekstilijah. Tekstilec.1995; 38 (5):121-123. (in Slovenian)
Kostajnšek K., Zupin Ž, Hladnik A, Dimitrovski K. Optical assessment of porosity parameters in transparent woven fabrics. Polymers. 2021; 13(3): 408. https://doi.org/10.3390/polym13030408 .
Jakšić D, Jakšić N. Assessment of Porosity of flat textile fabric. Text Res J. 2007; 77 (2): 105-110. https://doi.org/10.1177/0040517506065892 .
Dobnik Dubrovski P. Volume porosity of woven. Text Res J. 2000; 70: 915-919. https://doi.org/10.1177/004051750007001011
Arahne CAD/CAM for weaving. https://www.arahne.si/sl/. Accessed April 7, 2022.
SIST EN 1049-2: Textiles - Woven fabrics - Construction - Methods of analysis - Part 2: Determination of number of threads per unit length (ISO 7211-2:1984 modified). 1999
SIST EN 12127: Textiles - Fabrics - Determination of mass per unit area using small samples. 1999
SIST EN ISO 5084: Textiles - Determination of thickness of textiles and textile products. 1999
SIST EN ISO 9237: Textiles - Determination of permeability of fabrics to air. 1999
DIN 52 612: Testing of Thermal Insulating Materials; Determination of Thermal Conductivity by the Guarded Hot Plate Apparatus; Test Procedure and Evaluation. 1979
EN 13758-1:2001: Textiles - Solar UV protective properties - Part 1: Method of test for apparel fabrics. 2006
Tàpias M, Ralló M, Escofet J, Algaba I, Riva A. Objective measure of woven fabric’s cover factor by Image processing. Text Res J. 2010; 80: 35-44. https://doi.org/10.1177/0040517509104471 .
Ragab A, Fouda A, El-Deeb H, Abou-Taleb H. Determination of Pore Size. Porosity and Pore Size Distribution of Woven Structures by Image Analysis Techniques. J Textile Sci Eng. 2017; 7: 1-9. https://doi.org/10.4172/2165-8064.1000314 .
Kostajnšek K, Dimitrovski K, Hladnik A. Use of image analysis for the determination of open area fraction in woven fabrics. In: Proceedings of 13th Autex Conference. Dresden, Germany, 2013, pp. 1-5.
Kostajnšek K, Zupin Ž, Hladnik A, Dimitrovski K. Optical Assessment of Porosity Parameters in Transparent Woven Fabrics. Polymers. 2021; 13(3): 408. https://doi.org/10.3390/polym13030408.