Razvoj i karakterizacija elektrohemijskog senzora na bazi ugljenika modifikovanog nanočesticama TiO₂

Saša Mićin¹, Borislav N. Malinović² and Tijana Đuričić²

¹Fakultet bezbjednosnih nauka, Univerzitet u Banjoj Luci, Banja Luka, Bosna i Hercegovina ²Tehnološki fakultet, Univerzitet u Banjoj Luci, Banja Luka, Bosna i Hercegovina

Hem. Ind. 76(3) 147-158 (2022)

Tabela D-1. Gustine komponenti korišćenih za izradu modifikovane ugljenične paste Table D-1. Densities of components used to make modified carbon paste

Komponenta	Gustina, g cm ⁻³	Referenca
Grafitni prah	2,20	[1]
Parafinsko ulje	0,86	[2]
Trikrezolfosfat	1,14	[3]
nanočestice TiO ₂ (atanase forma)	3,89	[4]
nanočestice TiO ₂ (rutil forma)	4,25	[4]
nanaočestice TiO ₂ *	3,96	

*izračunata gustina na osnovu morfološkog sastava praha nanočestica TiO2 (80 % anatase forma, 20 % rutil forma)

Tabela D-2. EDS analiza površine modifikovane ugljenične elektrode izrađene od grafitnog praha, 40 vol.% PO i nanočestica TiO₂ Table D-2. EDS analysis of the surface of a modified carbon electrode made of graphite powder, 40 vol.% PO and TiO₂ nanoparticles

Sadržaj nanočestica	Flomont	Sadržaj, mas.%						
TiO₂ u pasti, mas.%	Element	Tačka 1	Tačka 2	Tačka 3	Tačka 4			
4 -	С	79,69	49,77	97,92	97,53			
	Ti	20,31	50,23	2,08	2,47			
8 -	С	62,72	58,01	96,53	97,75			
	Ti	34,58	41,99	3,47	2,25			
12 -	С	97,37	62,96	56,65	94,11			
	Ti	2,63	37,04	43,35	5,89			

Tabela D-3. EDS analiza površine modifikovane ugljenične elektrode izrađene od grafitnog praha, 40 vol.% TCP nanočestica TiO_2 Table D-3. EDS analysis of the surface of a modified carbon electrode made of graphite powder, 40 vol.% TCP and TiO_2 nanoparticles

Sadržaj nanočestica	alamant	Sadržaj, mas.%						
TiO₂ u pasti, mas.%	element	tačka 1	tačka 2	tačka 3	tačka 4			
4	С	96,35	97,18	95 <i>,</i> 66	97,02			
	Ti	2,30	1,27	2,80	1,36			
	Р	1,35	1,55	1,54	1,62			
	С	34,30	96,77	93,56	85,56			
8	Ti	37,02	2,02	2,41	11,22			
	Р	0,93	1,21	4,03	3,22			
	С	91,28	92,92	96,92	93,28			
12	Ti	6,92	5,15	1,93	4,77			
	Р	1,81	1,93	1,15	1,95			

, , ,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	- /				
Sadržaj nanočestica	alamant	Sadržaj, mas.%							
TiO₂ u pasti, mas.%	element	tačka 1	tačka 2	tačka 3	tačka 4				
	С	44,31	97,84	66,75	97,96				
4	Ti	19,23	1,17	32,84	1,18				
	Р	0,46	0,98	0,41	0,86				
	С	82,93	57,10	96,09	95,44				
8	Ti	0,26	42,44	2,72	3,88				
-	Р	0,10	0,45	1,19	0,69				
12	С	83,05	95,62	94,06	91,96				
	Ti	15,79	0,26	4,81	6,40				
	Р	1,16	0,12	1,13	1,64				

Tabela D-4. EDS analiza površine modifikovane ugljenične elektrode izrađene od grafitnog praha, 40 vol.% POTCP nanočestica TiO₂ Table D-4. EDS analysis of the surface of a modified carbon electrode made of graphite powder, 40 vol.% POTCP TiO₂ nanoparticles

Tabela D-5. Vrijednosti izmjerenog omskog otpora i specifične otpornosti modifikovanih ugljeničnihh elektroda izrađenih od grafitnog praha, PO, TCP, POTCP i nanočestica TiO₂

Table D-5. Values of measured ohmic resistance and specific resistance of modified carbon electrodes made of graphite powder, PO, TCP, POTCP and TiO₂ nanoparticles

Sadržaj nanočestica TiO ₂ ,	Sadržaj veziva,	C)mski otpor,	Ω	Specifična otpornost, Ω m- 1			
mas.%	vol.%	PO	ТСР	POTCP	PO	TCP	POTCP	
4	10	5,1	15,7	15,3	0,0151	0,0465	0,0453	
4	20	3,75	16,5	12	0,0111	0,0489	0,0356	
4	30	3,2	3,8	4,6	0,0095	0,0119	0,0136	
4	40	2,1	4,9	3,6	0,0062	0,0145	0,0107	
4	50	25,6	5,7	3,4	0,0759	0,0169	0,0101	
4	60	31	3,4	11,1	0,0919	0,0101	0,0329	
6	10	7,2	9,1	10,8	0,0213	0,0270	0,0320	
6	20	4,7	4,5	4,5	0,0139	0,0133	0,0133	
6	30	1,9	9,6	3,6	0,0056	0,0285	0,0107	
6	40	2	4,3	2,5	0,0059	0,0127	0,0074	
6	50	5,5	2,1	3,1	0,0163	0,0062	0,0092	
6	60	23,4	4,3	3,4	0,0694	0,0127	0,0101	
8	10	5,1	6,7	9,2	0,0151	0,0199	0,0273	
8	20	4,3	6,3	3,6	0,0127	0,0187	0,0107	
8	30	3,4	3,1	3,4	0,0101	0,0092	0,0101	
8	40	2,3	1,6	2,6	0,0068	0,0047	0,0077	
8	50	3,7	1,7	3,6	0,0110	0,0050	0,0107	
8	60	20,2	2,5	4,3	0,0599	0,0074	0,0127	
10	10	3,4	4,2	5,1	0,0101	0,0124	0,0151	
10	20	5,1	2,9	6,2	0,0151	0,0086	0,0184	
10	30	3,8	1,9	4	0,0113	0,0056	0,0119	
10	40	1,8	1,8	3,1	0,0053	0,0053	0,0092	
10	50	2,8	1,7	5	0,0083	0,0050	0,0148	
10	60	13,8	2,6	4,1	0,0409	0,0077	0,0122	
12	10	5,2	3,9	12,5	0,0154	0,0119	0,0370	
12	20	3,5	2,4	3,7	0,0104	0,0071	0,0110	
12	30	6,1	3,6	5	0,0181	0,0107	0,0148	
12	40	3,9	3,8	2,1	0,0116	0,0113	0,0062	
12	50	8,1	4,2	3,4	0,0240	0,0124	0,0101	
12	60	26,8	3,2	4,2	0,0795	0,0095	0,0124	

Tabela S 6. Vrijednosti $E_{p,a}$, $E_{p,k}$ i χ faktora za modifikovane ugljikove elektrode izrađene od grafitnog praha, PO, TCP i POTCP i nanočestica TiO₂

Table S 6. Values of	$E_{p,a}$, $E_{p,k}$ and	χ factors of	f modified carbon	electrodes m	ade of graph	ite powder, I	PO, TCP an	d POTCP (and TiO ₂
nanoparticles									

Sadržaj nanočestica	Sadržaj veziva,	E _{p,anodni} / mV			Ep	, _{katodni} / r	nV	χ faktor		
TiO ₂ , mas.%	vol.%	PO	TCP	POTCP	PO	TCP	POTCP	PO	TCP	POTCP
4	10	324,2	-	298,5	224	-	202,3	1,698	-	1,631
4	20	318,2	-	334	214,3	-	182,8	1,761	-	2,563
4	30	330	296,7	296,7	190,5	196,5	201	2,364	1,698	1,622
4	40	302,5	281	300,5	198,5	196,5	169	1,763	1,432	2,229
4	50	353,7	373,2	381,2	155,3	159,3	106	3,363	3,625	4,664
4	60	389	343,7	391	127,8	94,26	92,26	4,427	4,228	5,063
6	10	306,5	-	286,7	196,5	-	187	1,864	-	1,690
6	20	286,7	-	279	241,8	-	176,8	0,761	-	1,732
6	30	322,2	395	306,5	204,3	147,3	198,5	1,998	4,198	1,831
6	40	314,2	298,5	284,7	178	165	192,5	1,664	2,263	1,563
6	50	322,2	340	328	214,3	151,3	153,3	1,829	3,198	2,961
6	60	379,2	436,2	355,5	169	51	131,8	3,563	6,529	3,792
8	10	294,7	-	308,5	210,3	-	180,8	1,431	-	2,164
8	20	304,5	-	306,5	204,3	-	214,3	1,698	-	1,563
8	30	271	365,5	271	195	190,5	165	1,288	2,966	1,797
8	40	306,5	288,7	308,5	218	190,5	198,5	1,500	1,664	1,864
8	50	292,7	359,5	343,7	192,5	129,8	145,5	1,698	3,893	3,359
8	60	310,5	408,7	396,7	206,3	84,51	62,8	1,766	5,495	5,659
10	10	277	-	371,2	210,3	-	145,5	1,131	-	3,825
10	20	286,7	-	410,5	228	-	143,5	0,995	-	4,525
10	30	279	353,7	316,2	212,3	139,5	171	1,131	3,631	2,461
10	40	284,7	271	273	210,3	214,3	178,8	1,261	0,961	1,597
10	50	322,2	304,5	304,5	190,5	200,5	100,3	2,232	1,763	1,046
10	60	341,7	373,2	343,7	190,5	102,3	76,51	2,563	4,592	4,529
12	10	302,5	-	267,2	235,8	-	192,5	1,131	-	1,266
12	20	277	-	436,2	208,3	-	86,51	1,164	-	5,927
12	30	306,5	459,7	312,5	198,5	64,8	169	1,831	6,676	2,432
12	40	312,5	322,2	316,2	192,5	196,5	167	2,034	2,131	2,529
12	50	298,5	308,5	316,2	235,8	180,8	125,8	1,063	2,164	3,227
12	60	340	395	363,5	214,3	119,8	59,01	2,131	4,664	5,161

Tabela D-7. Vrijednosti I_{p,a}, I_{p,k}, I_{p,a}/I_{p,k} za modifikovane ugljikove elektrode izrađene od grafitnog praha, PO, TCP, POTCP i nanočestica

										-
Sadržaj nanočestica	Sadržaj veziva,		I _{p,a} / μΑ	۱		I _{p,k} / μΑ			I _{p,a} / I _{p,k}	
TiO ₂ , mas.%	vol.%	PO	TCP	POTCP	PO	TCP	POTCP	PO	TCP	POTCP
4	10	140	-	326	136	-	288	1,029	-	1,132
4	20	156	-	284	124	-	230	1,258	-	1,235
4	30	154	432	290	124	342	212	1,242	1,263	1,368
4	40	144	292	258	116	192	198	1,241	1,521	1,303
4	50	104	166	154	68	102	92	1,529	1,627	1,674
4	60	118	150	164	70	90	98	1,686	1,667	1,673
6	10	184	-	478	188	-	410	0,9787	-	1,166
6	20	214	-	420	208	-	322	1,0288	-	1,304
6	30	224	686	426	254	454	314	0,8819	1,511	1,357
6	40	182	296	236	178	196	162	1,0225	1,510	1,457
6	50	126	196	228	122	118	148	1,0328	1,661	1,541
6	60	108	184	172	82	98	102	1,3171	1,878	1,686
8	10	150	-	502	120	-	446	1,250	-	1,126
8	20	230	-	332	234	-	213	0,983	-	1,559
8	30	164	742	366	182	488	244	0,901	1,520	1,500
8	40	194	454	312	214	362	198	0,907	1,254	1,576
8	50	158	198	192	164	110	112	0,963	1,800	1,714
8	60	132	202	134	132	102	74	1,000	1,980	1,811
10	10	230	-	1828	248	-	2484	0,927	-	0,736
10	20	268	-	172	276	-	130	0,971	-	1,323
10	30	266	748	360	274	570	236	0,971	1,312	1,525
10	40	212	334	320	232	246	192	0,914	1,358	1,667
10	50	156	298	162	152	182	88	1,026	1,637	1,841
10	60	148	152	156	140	84	86	1,057	1,810	1,814
12	10	160	-	1102	122	-	1216	1,311	-	0,906
12	20	220	-	174	212	-	134	1,038	-	1,299
12	30	286	1308	366	268	828	266	1,067	1,580	1,376
12	40	256	624	286	236	470	186	1,085	1,328	1,538
12	50	168	298	224	162	220	118	1,037	1,355	1,898
12	60	160	144	174	138	86	92	1,159	1,674	1,891

Table D-7. Values of I_{p,a}, I_{p,k}, I_{p,a}/I_{p,k} of modified carbon electrodes made of graphite powder, PO, TCP, POTCP and TiO₂ nanoparticles

Slika D-1. SEM slike površine modifikovane ugljenične paste sa sadržajem 8 mas.% TiO₂ i a) 20 vol.% TCP, b) 60 vol.% TCP and c) 20 vol.% OTCP i d) 60 vol.% POTCP. Slike su snimljene u LFD modu Figure D-1. SEM image of the surface of the modified carbon paste with a content of 8 wt.% TiO₂ i a) 20 vol.% TCP, b) 60 vol.% TCP and c) 20 vol.% OTCP i d) 60 vol.% POTCP. Images were acquired in LFD mode

Slika S-2. SEM slike površine modifikovane ugljenične paste sa sadržajem 40 vol.% PO i a) 4 mas.%,b) 8 mas.% i c) 12 mas.% nanočestica TiO₂. Slike su snimljeneu LFD modu

Slika S-2. SEM image of the surface of the modified carbon paste with a content of 40 vol.% PO i a) 4 wt.%, b) 8 wt.%, and c) 12 wt.% TiO₂ nanoperticles. Images were acquired in LFD mode

Slika S-3. SEM slike površine modifikovane ugljenične paste sa sadržajem 40 vol.% TCP i a) 4 mas.%, b) 8 mas.% i c) 12 mas.% nanočestica TiO₂. Slike su snimljene u LFD modu

Figure S-3. SEM image of the surface of the modified carbon paste with a content of 40 vol.% TCP and a) 4 wt.%, b) 8 wt.% and c) 12 wt.% TiO₂ nanoparticles. Images were acquired in LFD mode

Slika D-4. SEM slike površine modifikovane ugljenične paste sa sadržajem 40 vol.% POTCP i a) 4 mas.% b) 8 mas.% i c) 12 mas.% nanočestica TiO₂. Slike su snimljene u LFD modu.

Figure D-4. SEM images of the surface of the modified carbon paste with a content of 40 vol.% POTCP i a) 4 wt.%, b) 8 wt.% and c) 12 wt.%, iO2 nanoparticles. Images were acquired in LFD mode.

LITERATURA

- [1] Akhond M, Absalan G, Tafakori A, Ershadifar H. Simultaneous Determination of Thiocyanateand Oxalate in Urine using a Carbon Ionic Liquid Electrode Modified with TiO₂-Fe Nanoparticles. *Anal Bioanal Chem.* 2016; 3(1): 73-86 <u>https://dx.doi.org/10.22036/abcr.2016.14554</u>
- [2] Ardakani MM, Beitollahi H, Taleat Z, Niasari MS. Fabrication and characterization of molybdenum(VI) complex–TiO₂ nanoparticles modified electrode for the electrocatalytic determination of L-cysteine. J Serb Chem Soc. 2011; 76(4): 575–589 <u>http://dx.doi.org/10.2298/JSC100504042M</u>
- [3] Merck KGaA, Darmstadt, Germany <u>https://www.merckmillipore.com/INTL/en/product/Graphite,MDA_CHEM-104206</u> pristupljeno 11. 05. 2021.
- [4] Merck KGaA, Darmstadt, Germany <u>https://www.merckmillipore.com/INTL/en/product/Paraffin,MDA_CHEM-107160</u> pristupljeno 11. 05. 2021.

