CARBON DIOXIDE UTILIZATION: PROCESS SIMULATION OF SYNTHETIC FUEL PRODUCTION FROM FLUE GASES

Scientific paper

Authors

  • H. Batuhan Oztemel Department of Chemical Engineering, Faculty of Chemical and Metallurgical, Yildiz Technical University, Davutpasa Campus, 34220 Esenler-Istanbul, Turkey https://orcid.org/0000-0002-8098-0736
  • Inci Salt Department of Chemical Engineering, Faculty of Chemical and Metallurgical, Yildiz Technical University, Davutpasa Campus, 34220 Esenler-Istanbul, Turkey https://orcid.org/0000-0002-2702-5991
  • Yavuz Salt Department of Chemical Engineering, Faculty of Chemical and Metallurgical, Yildiz Technical University, Davutpasa Campus, 34220 Esenler-Istanbul, Turkey

DOI:

https://doi.org/10.2298/CICEQ211025005B

Keywords:

Carbon dioxide, Fischer-Tropsch synthesis, Flue gas, Process simulation, Synthetic fuel

Abstract

Environmental problems are on the rise and nowadays more climate-related, caused primarily by greenhouse gas emissions. Also, worldwide industrial emissions from power plants will cause 50% of the carbon dioxide concentration in the atmosphere by 2035. The simulation study of the synthetic fuel production from flue gas emitted by industrial power plants uses the ChemCAD Software. The study aims to reproduce all flue gas constituents into valuable products to reduce the effects of harmful gases on the environment. The synthetic fuel produced consists of 94.75% hydrocarbons with carbon numbers ranging from 1 to 4 with a 6.59% overall conversion rate. 95% of the sulfur content in flue gas is collected by desulfurizing the fuel mixture. The membrane process also recovers 90.3% of the nitrogen gas in the flue gas. Sulfurization, Reverse Water Gas-Shift, and Fischer-Tropsch syntheses have 95%, 79%, and 98.4% single-pass conversions, respectively, with appropriate catalysts. Economic analysis is also performed, and the payback period of the project is 6.1 years, while the return-on-investment rate is 16.64%.

References

UN Environmental Programme, UN Environment Annual Report 2019, https://www.unep.org/annualreport/2019/index.php [accessed 16 September 2020].

National Oceanic and Atmospheric Administration, Ocean acidification, https://www.noaa.gov/education/resource-collections/ocean-coasts/ocean-acidification [accessed 16 September 2020].

F. Stocker, K. Qin, M. Plattner, K. Tignor, J. Allen, A. Boschung, V. Xia, Climate Change: The Physical Science Basis, in Intergovernmental Panel on Climate Change, Geneva, Switzerland (2013), p. 190—196.

Global Climate Change – Facts (FAQ). NASA - Climate Change: Vital Signs of the Planet. Retrieved February 20, 2021, from https://climate.nasa.gov/faq/.

Minnesota Pollution Control Agency, Chlorofluorocarbons (CFCs) and hydrofluorocarbons (HFCs), https://www.pca.state.mn.us/air/ chlorofluorocarbons-cfcs-and-hydrofluorocarbons-hfcs [accessed 20 November 2020].

T. Gunduz, Environmental Chemistry, Gazi Publishers, Ankara (2012), p. 90—170.

R. Kolieb, D. Herr, Clim. Policy, 12 (2011) 378—389.

B. Bereiter, S. Eggleston, J. Schmitt, C. Ahles, F. Stocker, H. Fischer, S. Kipfstuhl, J. Chapellaz, Geophys. Res. Lett. 42 (2015) 542—549.

M. Ozturk, I. Dincer, Nat. Gas Sci. Eng. 83 (2020) p. 103—111.

International Energy Agency Statistics, CO2 emissions statistics, https://www.iea.org/data-and-statistics/data-product/co2-emissions-from-fuel-combustion-highlights#overview [accessed 16 July 2021].

United Nations Environment Programme, Lagging in climate action, G20 nations have huge opportunities to increase ambition, https://www.unep.org/news-and-stories/press-release/lagging-climate-action-g20-nations-have-huge-oportunities-increase [accessed 17 April 2021].

J. Olivier, W. Peters, Trends in Global CO2 and Total Greenhouse Gas Emissions, https://www.pbl.nl/sites/default/files/downloads/pbl-2020-trends-in-global-co2-and-total-greenhouse-gas-emissions-2019-report_4068.pdf [accessed 18 April 2020].

G. Speight, Natural Gas: A Basic Handbook, Gulf Professional Publishing, London (2019), p. 59—98.

E. Koohestanian, F. Shahraki. J. Environ. Chem. Eng. 9(4) (2021), 105—125.

M. A. Nemitallah, M. A. Habib, H. M. Badr, S. A. Said, A. Jamal, R. Ben-Mansour, E. M. A. Mokheimer, K. Mezghani. Int. J. Energy Res. 41(12) (2017), 1670—1708.

X. Liang, Q. Wang, Z. Luo, H. Zhang, K. Li, Y. Feng, R. Shaikh, J. Cen, RSC Adv. 8 (2018) 35690—35699.

S. Abuelgasim, W. Wang, A. Abdalazeez, Sci. Total Environ. 764 (2021) 142—892.

M. Osman, N. Khan, A. Zaabout, S. Cloete, S. Amini. Fuel Process. Technol. 214 (2021) 106—684.

A. K. Vuppaladadiyam, J. G. Yao, N. Florin, A. George, X. Wang, L. Labeeuw, Y. Jiang, R. W. Davis, A. Abbas, P. Ralph, P. S. Fennell, M. Zhao. ChemSusChem. 11(2) (2018), 334—355.

R. Kothari, S. Ahmad, V. V. Pathak, A. Pandey, A. Kumar, R. Shankarayan, P. N. Black, V. V. Tyagi. Biomass Convers. Biorefin. 11(4) (2019) 1419—1442.

E. Koohestanian, J. Sadeghi, D. Mohebbi-Kalhori, F. Shahraki, A. Samimi. Energy, 144 (2018) 279—285.

P. Ortega, Analyzes of Solar Chimney Design, Trondheim, Norway (2011), p. 78.

A. Simonovic, N. Stupar, P. Pekovic, FFME Trans. 36 (2008) 119—125.

R. Arachchige, C. Melaaen, Energy Procedia. 23 (2012) 391—399.

Process Instrumentation Consultancy & Design, & Edwards, J. E. Process Modelling Selection of Thermodynamic Methods. Chemstations. (2018) https://www.chemstations.com/content/documen ts/Technical_Articles/thermo.pdf.

D. Aaron, C. Tsouris, Sep Sci Technol. 40 (2005) 321—348.

J. Mustafa, M. Farhan, M. Hussain, J. Membr. Sci. 6 (2016) 221—238.

F. Russo, F. Galiano, A. Iulianelli, A. Basile, A. Figoli, Fuel Process. Technol. 213 (2021) 106—643.

I. Song, H. Ahn, H. Jeon, K. Jeong, Y. Lee, H. Choi, H. Kim, B. Lee, Desalination, 234 (2008) 307—315.

G. Towler, R. Sinnott, Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design, Elseiver, Amsterdam (2012) p. 811—816.

D. Kundnaney, K. Kushwaha, 2015, A Critical Review on Heat Exchangers used in Oil Refinery, in 3rd Afro-Asian International Conference on Science, Engineering and Technology, Bharuch, India (2015), p. 1—5.

M. Rhine, S. Truelove, HEDH Multimedia-Heat Exchanger Design Handbook, Begell House Inc. Connecticut (2014) p. 24.

International Organization for Standardization, Petroleum Product-Determination of sulfur content of automotive fuels—Ultraviolet fluorescence method (ISO 20846:2019), https://www.iso.org/standard/74313.html [accessed 17 April 2020].

N. Mashapa, D. Rademan, J. Vuuren, Ind. Eng. Chem. Res. 46 (2007) 6338—6344.

J. Zaman, A. Chakma, Fuel Process. Technol. 41 (1995) 159—198.

A. Wolf, A. Jess, C. Kern, Chem. Eng. Technol. 39 (2016) 1040—1048.

H. Kang, W. Bae, Y. Cheon, J. Lee, S. Ha, W. Jun, H. Lee, W. Kim, Appl. Catal. B. 103 (2011) 169—180.

J. Chang, L. Bai, T. Teng, L. Zhang, J. Yang, Y. Xu, W. Xiang, W. Li, Chem. Eng. Sci. 62 (2007) 4983—4991.

A. Delparish, A. K. Avci. Fuel Process. Technol. 151 (2016) 72—100.

Y. N. Wang, W. P. Ma, Y. J. Lu, J. Yang, Y. Xu, H. W. Xiang, Y. Li, Y. L. Zhao, B. J. Zhang. Fuel, 82 (2021) 195—213.

H. Brauers, I. Braunger, J. Jewell, Energy Res. Soc. 76 (2021) 102—120.

J. Carvill, Mechanical Engineers Data Handbook, M. Kutz Ed., Elseiver, Amsterdam (2005), 102—145.

S. Hosokai, K. Matsuoka, K. Kuramoto, Y. Suzuki, Fuel. Process. Technol. 152 (2016) 399—405.

R. Turton, J. Shaeiwitz, D. Bhattacharyya, W. Whiting, Analysis, Synthesis, and Design of Chemical Processes (International Series in the Physical and Chemical

Engineering Sciences), Pearson, London (2018), 156—213.

R. Woods, Rules of Thumb in Engineering Practice, Wiley,

New York (2007).

J. Kim, Y. Seo, D. Chang, Apl. Energy. 182 (2016) 154—163.

E. Asen, Corporate Income Tax Rates in Europe, https://taxfoundation.org/2020-corporate-tax-rates-in-europe [accessed 16 April 2020].

United Nations Development Programme, Sustainable Development Goals, https://sdgs.un.org/goals [accessed 16 September 2020].

M. Höök, X. Tang. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy, 52 (2013) 797—809.

United Nations Framework Convention on Climate Change. About Carbon Pricing, https://unfccc.int/about-us/regional-collaboration-centres/the-ci-aca-initiative/about-carbon-pricing#eq-1 [accessed 8 February 2022].

W. C. Wang, Y. C. Liu, R. A. A. Nugroho, R. A. A. Energy, 239 (2022) 121970.

R. Chaubey, S. Sahu, O. James, S. Maity. Renew. Sust. Energy. Rev. 23 (2013) 443—462.

Birken, E. G. Understanding Return on Investment (ROI). Forbes Advisor, https://www.forbes.com/advisor/investing/roi-return-on-investment/ [accessed 9 February 2022].

Downloads

Published

29.04.2022 — Updated on 15.08.2022

Issue

Section

Articles

How to Cite

CARBON DIOXIDE UTILIZATION: PROCESS SIMULATION OF SYNTHETIC FUEL PRODUCTION FROM FLUE GASES: Scientific paper. (2022). Chemical Industry & Chemical Engineering Quarterly, 28(4), 305-317. https://doi.org/10.2298/CICEQ211025005B

Similar Articles

81-90 of 113

You may also start an advanced similarity search for this article.