DRYING KINETICS AND ENERGY EFFICIENCY OF MICROWAVE-DRIED LEMON SLICES

Scientific paper

Authors

  • Fadime Begüm Tepe Deparment of Food Engineering, Faculty of Engineering, Pamukkale University, Denizli, Turkey
  • Tolga Kağan Tepe Department of Food Technology, Şebinkarahisar Vocational School of Technical Science, Giresun University, Giresun, Turkey https://orcid.org/0000-0003-4989-5354
  • Ayten Ekinci Department of Chemistry and Chemical Processing Technologies, Vocational School of Gemerek, Sivas Cumhuriyet University, Sivas, Turkey

DOI:

https://doi.org/10.2298/CICEQ210125004T

Keywords:

lemon slices, drying characteristics, microwave drying, effective diffusion, energy efficiency

Abstract

In the current study, lemon slices were dried at various microwave powers (120, 350, 460, 600, and 700 W) to determine drying characteristics and energy efficiency. Drying rate and time were significantly affected by the increase in microwave power. The lowest and highest drying times were 8 and 54 minutes at 700 and 120 W, respectively. As microwave power increased, drying rate increased, and drying time decreased. Besides, the most suitable model to describe microwave drying curves of the lemon slice was obtained as the Page model. The values of Deff of the dried lemon slices were calculated between 3.61x10-9 and 3.41x10-8 m2s-1. The Ea of the lemon slices drying, calculated using Deff, and the rate constant obtained from the Page model were 4.39 Wg-1 and 6.04 Wg-1, respectively. Additionally, the higher the cumulative energy efficiency, the lower the specific energy consumption. The lowest specific energy consumption and the highest energy efficiency were calculated at 460 W. The 460 W drying power was the best power with 11 min of drying time, the highest energy efficiency, and the lowest specific energy consumption.

References

H. Darvishi, M. H. Khoshtaghaza, S. Minaei, Int. Agrophys. 281 (2014) 1—6.

O. M. Kesbi, M. Sadeghi, S. A. Mireei, Eng. Agric. Environ. Food 93 (2016) 216—223.

J. Wang, C. L. Law, P. K. Nema, J. H. Zhao, Z. L. Liu, L. Z. Deng, Z.J. Gao, H. W. Xiao, J. Food Eng. 224 (2018) 129—138.

M. Sadeghi, O.M. Kesbi, S. A. Mireei, J. Sci. Food Agric. 933 (2013) 471—478.

M. Torki-Harchegani, M. Ghasemi-Varnamkhasti, D. Ghanbarian, M. Sadeghi, M. Tohidi, Heat Mass Transf. 522 (2016) 281—289.

P. K. Wankhade, R. S. Sapkal, V. S. Sapkal, Procedia Eng. 51 (2013) 371—374.

M. Zhang, J. Tang, A. S. Mujumdar, S. Wang, Trends Food Sci. Technol. 1710 (2006) 524—534.

A. O. Omolola, A. I. Jideani, P. F. Kapila, Int. J. Agric. Biol. Eng. 76 (2014) 107—113.

A. Fijalkowska, M. Nowacka, A. Wiktor, M. Sledz, D. Witrowa‐Rajchert, J. Food Process Eng. 393 (2016) 256—265.

C. Ricce, M. L. Rojas, A. C. Miano, R. Siche, P. E. D. Augusto, Food Res. Int. 89 (2016) 701—708.

R. L. Monteiro, B. A. Carciofi, J. B. Laurindo, J. Food Eng. 178 (2016) 1—11.

T. K. Tepe, B. Tepe, Heat Mass Transf. 56(11) (2020) 3047—3057.

J. Srikiatden, J. S. Roberts, Int. J. Food Prop. 10(4) (2007) 739—777.

X. D. Chen, A. S. Mujumdar, X. D. Chen, A. S. Mujumdar (Eds.) Drying technologies in food processing. Blackwell, Oxford (2008).

M. Zarein, S. H. Samadi, B. Ghobadian, J. Saud Soc. Agric. Sci. 141 (2015) 41—47.

E. Demiray, A. Seker, Y. Tulek, Heat Mass Transf. 535 (2017) 1817—1827.

J. R. D. J. Junqueira, J. L. G. Corrêa, D. B. Ernesto, J. Food Process. Preserv. 41 (2017) e13250.

C. Kumar, M. U. H. Joardder, T. W. Farrell, G. J. Millar, M. A. Karim, Drying Technol. 34(8) (2016) 962—973.

S. Chandrasekaran, S. Ramanathan, T. Basak, Food Res. Int. 52(1) (2013) 243—261.

H. Darvishi, M. Azadbakht, A. Rezaeiasl, A. Farhang, J. Saud Soc. Agric. Sci. 122 (2013) 121—127.

D. I. Onwude, N. Hashim, R. B. Janius, N. M. Nawi, K. Abdan, Compr. Rev. Food Sci. Food Saf. 15 (2016) 599—618.

Y. Soysal, S. Öztekin, Ö. Eren, Biosystems Eng. 934 (2006) 403—413.

C. Beaudry, G. S. V. Raghavan, T. J. Rennie, Drying Technol. 219 (2003) 1797—1810.

J. Bi, A. Yang, X. Liu, X. Wu, Q. Chen, Q. Wang, X. Wang, LWT-Food Sci. Technol. 602 (2015) 1136—1142.

M. Śledź, M. Nowacka, A. Wiktor, D. Witrowa-Rajchert, Food Bioprod. Process. 914 (2013) 421—428.

J. Crank, Mathematics of Diffusion, Clarendon Press, Oxford (1975).

B. Özbek, G, Dadali J. Food Eng. 83(4) (2007) 541—549.

H. Yoğurtçu, Fırat Üniv. Eng. Sci. J. 261 (2014) 27—33.

H. Polatci, M. Taşova, Anadolu Agric. Sci. J. 332 (2018) 124—130.

N. Aghilinategh, S. Rafiee, A. Gholikhani, S. Hosseinpur, M. Omid, S.S. Mohtasebi, N. Maleki, Food Sci. Nutr. 3(6) (2015) 519—526.

S. Çelen, A. Haksever, A. Moralar, Karaelmas Sci. Eng. J. 7(1) (2017) 228—236.

H. Azimi-Nejadian, S.S. Hoseini, Heat Mass Transf. 55(10) (2019) 2921—2930.

G. Dadali, E. Demirhan, B. Özbek, Food Bioprod. Process. 86(4) (2008) 235—241.

Z. Wang, J. Sun, X. Liao, F. Chen, G. Zhao, J. Wu, X. Hu, Food Res. Int. 40(1) (2007) 39—46.

M. Mosa, J. Soil Sci. Agric. Eng.10(4) (2019) 259—265.

Downloads

Published

22.04.2022 — Updated on 15.08.2022

Issue

Section

Articles

How to Cite

DRYING KINETICS AND ENERGY EFFICIENCY OF MICROWAVE-DRIED LEMON SLICES: Scientific paper. (2022). Chemical Industry & Chemical Engineering Quarterly, 28(4), 297-304. https://doi.org/10.2298/CICEQ210125004T

Similar Articles

31-40 of 85

You may also start an advanced similarity search for this article.