FOAMED GEOPOLYMER WITH CUSTOMIZED PORE STRUCTURE

Scientific paper

Authors

  • Ida Balczár Department of Materials Engineering, Faculty of Engineering, University of Pannonia, Veszprém, Hungary
  • Adrienn Boros Department of Materials Engineering, Faculty of Engineering, University of Pannonia, Veszprém, Hungary https://orcid.org/0000-0003-4381-3581
  • András Kovács Department of Materials Engineering, Faculty of Engineering, University of Pannonia, Veszprém, Hungary https://orcid.org/0000-0002-6173-7634
  • Tamás Korim Department of Materials Engineering, Faculty of Engineering, University of Pannonia, Veszprém, Hungary https://orcid.org/0000-0001-5877-0479

DOI:

https://doi.org/10.2298/CICEQ211007003B

Keywords:

Catalyst Support, Geopolymer,, Heat Insulator, Mechanical property, Porous material, Thermal conductivity

Abstract

Due to their favorable production conditions and promising properties (e.g., low shrinkage after foaming, mechanical and chemical stability, high-temperature resistance), geopolymer foams are suitable for heat- and sound insulating refractory building materials. Another promising field of application may be their use as catalyst supports in water treatment. Metakaolin-based foams were prepared by a direct foaming process with high total porosity (> 75 vol%), low bulk density (< 500 kg/m3), approximately 1 MPa compressive strength, and low thermal conductivity (0.095 W/mK). By varying the concentration of foaming agent (H2O2 solution) and stabilizing agent (sodium oleate), it is possible to produce foams with designed porosity and pore size distribution. Foams with mainly closed pores are suitable for thermal insulation, while those with significantly open pores can use as catalyst supports. The computed tomography images showed that the concentration of stabilizing agent is a key parameter in forming a homogeneous pore structure and open pores; up to 24 vol% open porosity can be achieved without significantly affecting other properties. The physical properties of the foams are equally influenced by the thickness of cell walls and the size of the cells themselves.

References

M. Scheffler, C. Paolo, Cellular ceramics: structure, manufacturing, properties and applications, Wiley-VCH, Weinheim (2006).

M. Nodehi, Innov. Infrastruct. Solut. 6 (2021) 231.

C. Shi, D. Roy, P. Krivenko, Alkali-activated cements and concretes, CRC press, Boca Raton (2003).

I. Garcia-Lodeiro, A. Palomo, A. Fernández-Jiménez, in Handbook of alkali-activated cements, mortars and concretes, F. Pacheco-Torgal, J.A. Labrincha, C. Leonelli, A. Palomo, P. Chindaprasirt, Woodhead Publishing, Cambridge (2015), pp. 19—47.

Z. Zhang, J.L. Provis, A. Reid, H. Wang, Constr. Build. Mater. 56 (2014) 113—127.

Z. Abdollahnejad, F. Pacheco-Torgal, T. Félix, W. Tahri, J.B. Aguiar, Constr. Build. Mater. 80 (2015) 18—30.

V. Ducman, L. Korat, Mater. Charact. 113 (2016) 207—213.

V. Vaou, D. Panias, Miner. Eng. 23 (2010) 1146—1151.

A. Hajimohammadi, T. Ngo, P. Mendis, T. Nguyen, A. Kashani, J.S. van Deventer, Mater. Des. 130 (2017) 381—391.

A. Hajimohammadi, T. Ngo, P. Mendis, J. Sanjayan, Mater. Des. 120 (2017) 255—265.

M. Şahin, S.T. Erdoğan, Ö. Bayer, Constr. Build. Mater. 181 (2018) 106—118.

Z. Liu, N.N. Shao, T.Y. Huang, J.F. Qin, D.M. Wang, Y. Yang, Int. J. Miner., Metall. Mater. 21 (2014) 620—626.

W.D. Rickard, L. Vickers, A. Van Riessen, Appl. Clay Sci. 73 (2013) 71—77.

J.G. Sanjayan, A. Nazari, L. Chen, G.H. Nguyen, Constr. Build. Mater. 79 (2015) 236—244.

M.S. Cilla, M.R. Morelli, P. Colombo, Ceram. Int., 40 (2014) 13585—13590.

M.S. Cilla, M.R. Morelli, P. Colombo, J. Eur. Ceram. Soc. 34 (2014) 3133—3137.

F. Colangelo, G. Roviello, L. Ricciotti, V. Ferrándiz-Mas, F. Messina, C. Ferone, O. Tarallo, R. Cioffi, C.R. CheesemanCem. Concr. Compos. 86 (2018) 266—272.

P. Duan, L. Song, C. Yan, D. Ren, D., Z. Li, Ceram. Int. 43 (2017) 5115—5120.

P. Posi, C. Teerachanwit, C. Tanutong, S. Limkamoltip, S. Lertnimoolchai, V. Sata, P. Chindaprasirt, Mater. Des. 52 (2013) 580—586.

M. Mastali, P. Kinnunen, H. Isomoisio, M. Karhu, M. IllikainenConstr. Build. Mater. 187 (2018) 371—381.

L. Korat, V. Ducman, Cem. Concr. Compos. 80 (2017) 168—174.

L. Zhang, F. Zhang, M. Liu, X. Hu, Chem. Eng. J. 313 (2017) 74—82.

R.M. Novais, G. Ascensão, N. Ferreira, M.P. Seabra, J.A. Labrincha, Ceram. Int. 44 (2018) 6242—6249.

G. Masi, W.D.A. Rickard, L. Vickers, M.C. Bignozzi, A. Van Riessen, Ceram. Int. 40 (2014) 13891—13902.

M. Łach, K. Korniejenko, J. Mikuła, Procedia Eng. 151 (2016) 410—416.

C. Bai, G. Franchin, H. Elsayed, A. Conte, P. Colombo, J. Eur. Ceram. Soc. 36 (2016) 4243—4249.

C. Bai, T. Ni, Q. Wang, H. Li, P. Colombo, J. Eur. Ceram. Soc. 38 (2018) 799—805.

C. Bai, G. Franchin, H. Elsayed, A. Zaggia, L. Conte, H. Li, P. Colombo, J. Mater. Res. 32 (2017) 3251—3259.

I. Balczár, T. Korim, A. Dobrádi, Constr. Build. Mater. 93 (2015) 983—988.

Downloads

Published

21.04.2022 — Updated on 15.08.2022

Issue

Section

Articles

How to Cite

FOAMED GEOPOLYMER WITH CUSTOMIZED PORE STRUCTURE: Scientific paper. (2022). Chemical Industry & Chemical Engineering Quarterly, 28(4), 287-296. https://doi.org/10.2298/CICEQ211007003B

Similar Articles

61-70 of 81

You may also start an advanced similarity search for this article.