Main Article Content

Thayammal Ganesan Arul
Varatharaju Perumal
Rajasekaran Thanigaivelan


The use of micro components is increasing day by day in the industries such as aviation, power circuit boards, inkjet nozzle, and biomedical. Among various non-traditional micromachining methods, electrochemical micromachining (EMM) shows unique characteristics, such as no tool wear, no residual stress, and high accuracy. In this research, EMM is considered to study the effect of square-shaped stainless steel (SS) and aluminum metal matrix composite (AMC) tools on square hole generation. The significant process parameters, such as machining voltage, duty cycle, and aqueous sodium nitrate (NaNO3) electrolyte of varying concentrations, are considered for the study. The performances of the EMM process are evaluated in terms of machining rate (MR) and Overcut (OC).  The AMC tool shows 43.22% lesser OC than the SS tool at the parameter combinations of 8 V, 85%, and 23 g/L. Also, the same parameter combination MR for the SS tool is 71.6% higher than the AMC tool. Field emission scanning electron microscope image (FESEM) analysis shows that the micro square hole generated using composite electrode shows micro-pits on the circumference of the square hole. The energy-dispersive X-ray spectroscopy (EDAX) analysis is conducted to verify the presence and distributions of reinforcement in the AMC tool.

Article Details

How to Cite
Arul, T. G., Perumal, V., & Thanigaivelan, R. (2022). PERFORMANCE STUDY OF ELECTROCHEMICAL MICROMACHINING USING SQUARE COMPOSITE ELECTRODE FOR COPPER: Scientific paper. Chemical Industry & Chemical Engineering Quarterly, 28(3), 247–253.


M.R. Pratheesh Kumar, K. Prakasan, K. Kalaichelvan, Russ. J. Electrochem. 52 (2016) 943-954.

M. Soundarrajan, R. Thanigaivelan, Russ. J. Appl. Chem. 91 (2018) 1805-1813.

B. Mouliprasanth P. Hariharan, Exp. Tech. 44 (2019) 259-273.

M. Soundarrajan, R. Thanigaivelan, Russ. J. Electrochem. 57 (2021) 172-182.

N. Pradeep, K.S. Sundaram, M. Pradeep Kumar, Mater. Manuf. Processes. 35(2020) 72-85.

M. Soundarrajan, R. Thanigaivelan, Mater Manuf. Processes. 35 (2020) 775-782.

B. Liu, H. Zou, H. Luo, X. Yue, Micromachines 11 (2020) 118.

R. Kishi, J. Yan, J. Micro Nano-Manuf. 8 (2020) 010906 (6 pages).

S. Ayyappan, N. Vengatajalapathi, Advances in Unconventional Machining and Composites, in Proceeding of AIMTDR 2018, Anna University, Chennai, India (2018) p 255-268.

S. Maniraj, R. Thanigaivelan, Mater. Manuf. Processes. 34 (2019) 1494-1501.

J. Arab, H.K. Kannojia, P. Dixit, Precis. Eng. 60 (2019) 437-447.

T. Geethapriyan, P. Lakshmanan, M. Prakash, U.M. Iqbal, S. Suraj, Advances in Manufacturing Processes, in Proceeding of AIMTDR 2018, Anna University, Chennai, India (2018) p. 441-456.

G. Pang, K. Xin, F. Bu, T. Gao, Int. J. Adv. Manuf. Technol. 101 (2019) 2151-2164.

T. Paczkowski, J. Zdrojewski, J. Mater. Process. Technol. 244 (2017) 204-214.

R. Thanigaivelan, R. Senthilkumar, R.M. Arunachalam, N. Natarajan, Surf. Eng. Appl. Electrochem. 53 (2017) 486-492.

S.S. Anasane, B. Bhattacharyya, Int. J. Precis. Technol. 6 (2016) 231-248.

A.K. Verma, J. Water Process. Eng. 20 (2017) 168-172.

H.T. Yang, B.M. Chen, Z.C. Guo, H.R. Liu, Y.C. Zhang, H. Huang, R.C. Fu, Trans. Nonferrous Met. Soc. China 24 (2014) 3394-3404.

Y. Yao, G. Teng, Y. Yang, B. Ren, L. Cui, Sep. Purif. Technol. 227 (2019) 115684.

G. Pradeep Kumar, R. Thanigaivelan, R.M. Arunachalam, P. Paramasivam, High Temperature Material Processes: Int. Q. High-Technol. Plasma Processes18 (2014) 27-43.

J.C.P.T. Oliveira, A.F. Padilha, Rev. Esc. Minas 62 (2009) 373-378.

Most read articles by the same author(s)